화학공학소재연구정보센터
Journal of Physical Chemistry B, Vol.125, No.8, 2146-2156, 2021
Direct Measurement of the Selective Microwave-Induced Heating of Agglomerates of Dipolar Molecules: The Origin of and Parameters Controlling a Microwave Specific Superheating Effect
Agglomerates of polar molecules in nonpolar solvents are selectively heated by microwave radiation. The magnitude of the selective heating was directly measured by using the temperature dependence of the intensities of the Stokes and anti-Stokes bands in the Raman spectra of p-anitroanisole (pNA) and mesitylene. Under dynamic heating conditions, a large apparent temperature difference (AT) of over 100 degrees C was observed between the polar pNA solute and the nonpolar mesitylene solvent. This represents the first direct measurement of the selective microwave heating process. The magnitude of the selective microwave heating was affected by the properties of the agglomerated pNA. As the concentration of the pNA increases, the magnitude of the selective heating of the pNA was observed to decrease. This is explained by the tendency of the pNA dipoles to orient in an antiparallel fashion in the aggregates as measured by the Kirkwood g value, which decreased with increasing concentration. This effect reduces the net dipole moment of the agglomerates, which decreases the microwave absorption. After the radiation was terminated, the effective temperature of the dipolar molecules returned slowly to that of the medium. The slow heat transfer was modeled successfully by treating the solutions as a biphasic solvent/solute system. Based on modeling and the fact that the agglomerate can be heated above the boiling temperature of the solvent, an insulating layer of solvent vapor is suggested to form around the heated agglomerate, slowing convective heat transfer out of the agglomerate. This is an effect unique to microwave heating.