화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.2, 200-208, May, 2021
액화천연가스(LNG)를 사용한 수소 생산 및 액화 공정 개발
Design and Analysis of Hydrogen Production and Liquefaction Process by Using Liquefied Natural Gas
E-mail:
초록
액체 상태의 수소는 기체 상태의 수소에 비해 수송이 용이하고 에너지 밀도가 높으며 폭발 위험성이 낮다. 하지만 수소 액화 공정은 냉각 사이클에 많은 양의 에너지가 소모된다. 반면에 액화천연가스(LNG; Liquefied Natural Gas)는 재기화 과정에서 다량의 냉열이 버려진다. 따라서 LNG 냉열을 회수하여 수소 냉각에 활용한다면 공정 효율을 높일 수 있다. 또한, 천연가스 개질을 통한 수소 생산은 가장 경제성 있는 방법으로 평가받고 있으며, 이러한 측면에서 LNG를 수소 생산의 원료로 사용할 수 있다. 본 연구에서는 LNG를 원료 및 냉열원으로 사용하여 수소를 생산 및 액화시키는 공정을 개발하고 열역학적 관점에서 공정을 평가하였다. 공정 개발을 위해 기존의 탄화 수소 혼합 냉매와 헬륨-네온냉매를 이용한 수소 액화 공정을 비교 공정으로 선정하였다. 이후 LNG를 원료 및 수소 예냉의 냉열원으로 사용하는 새로운 공정을 설계하여 에너지 소모량 및 엑서지 효율 측면에서 기존 공정과 비교, 분석하였다. 제안된 공정은 기존 공정 대비 약 17.9%의 에너지 절감 및 11.2%의 엑서지 효율이 향상된 결과를 나타내었다.
Compare to the gaseous hydrogen, liquid hydrogen has various advantages: easy to transport, high energy density, and low risk of explosion. However, the hydrogen liquefaction process is highly energy intensive because it requires lots of energy for refrigeration. On the other hand, the cold energy of the liquefied natural gas (LNG) is wasted during the regasification. It means there are opportunities to improve the energy efficiency of the hydrogen liquefaction process by recovering wasted LNG cold energy. In addition, hydrogen production by natural gas reforming is one of the most economical ways, thus LNG can be used as a raw material for hydrogen production. In this study, a novel hydrogen production and liquefaction process is proposed by using LNG as a raw material as well as a cold source. To develop this process, the hydrogen liquefaction process using hydrocarbon mixed refrigerant and the helium-neon refrigerant is selected as a base case design. The proposed design is developed by applying LNG as a cold source for the hydrogen precooling. The performance of the proposed process is analyzed in terms of energy consumption and exergy efficiency, and it is compared with the base case design. As the result, the proposed design shows 17.9% of energy reduction and 11.2% of exergy efficiency improvement compare to the base case design.
  1. Outlook BE, “2019 Edition,” London, United Kingdom 2019 (2019).
  2. Dincer I, Int. J. Hydrog. Energy, 37(2), 1954 (2012)
  3. Zheng JY, Liu XX, Xu P, Liu PF, Zhao YZ, Yang J, Int. J. Hydrog. Energy, 37(1), 1048 (2012)
  4. Sharma S, Ghoshal SK, Renew. Sust. Energ. Rev., 43, 1151 (2015)
  5. Drnevich R, Praxair, Strategic Initiatives for Hydrogen Delivery Workshop, Tonawanda, New York(2003).
  6. Quack H, AIP Conference Proceedings, 613(1), 255 (2002).
  7. Krasae-in S, Stang JH, Neksa P, Int. J. Hydrog. Energy, 35(10), 4524 (2010)
  8. Ansarinasab H, Mehrpooya M, Sadeghzadeh M, J. Clean Prod., 210, 530 (2019)
  9. Lee I, Park J, Moon I, Energy, 140, 106 (2017)
  10. Kuendig A, Loehlein K, Kramer GJ, Huijsmans J, Proceedings of the 16th World Hydrogen Energy Conference 2006, Lyon, France, 3326-3333(2006).
  11. Han D, Byun H, Baek Y, Transactions of the Korean Hydrogen and New Energy Society, 31(1), 33 (2020).
  12. Yang J, Yoon Y, Ryu M, An S, Shin J, Lee C, Appl. Energy, 255, 113840 (2019)
  13. Aasadnia M, Mehrpooya M, Appl. Energy, 212, 57 (2018)
  14. Chen J, Liu B, Gao X, Xu D, Energies, 11(8), 2045 (2018)
  15. Baccioli A, Antonelli M, Frigo S, Desideri U, Pasini G, Appl. Energy, 217, 328 (2018)
  16. Alabdulkarem A, Mortazavi A, Hwang Y, Radermacher R, Rogers P, Appl. Therm. Eng., 31(6), 1091 (2011)
  17. Jensen JE, Stewart RG, Tuttle WA, Brechna H, Brookhaven National Laboratory(1980).
  18. Sadaghiani MS, Mehrpooya M, Int. J. Hydrog. Energy, 42(9), 6033 (2017)
  19. Bidar B, Shahraki F, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 37(5), 209 (2018).
  20. Asadnia M, Mehrpooya M, Int. J. Hydrog. Energy, 42(23), 15564 (2017)