화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.59, No.2, 232-238, May, 2021
Steam Reforming of Toluene Over Ni/Coal Ash Catalysts: Effect of Coal Ash Composition
E-mail:
The development of a low cost catalyst with high performance and small amount of carbon deposition on catalyst from toluene steam reforming were investigated by using coal ash as a support material. Ni-loaded coal ash catalyst showed similar catalytic activi ty for toluene steam reforming compared with the Ni/Al2O3. At 800oC, the toluene conversionwas 77% for Ni/TAL, 68 % for Ni/KPU and 78% for Ni/Al2O3. Ni/TAL showed similar toluene conversion to Ni/Al2O3.However, Ni/KPU produced higher hydrogen yield at relatively lower toluene conversion. Ni/KPU catalyst showed aremarkable ability of suppressing the carbon deposition. The difference in coke deposition and hydrogen yield is due to the composition of KPU ash (Ca and Fe) which increase coke resistance and water gas shift reaction. This study suggests that coal ash catalysts have great potential for the application in the steam reforming of biomass tar.
  1. Cao JP, Liu TL, Ren J, Zhao XY, Wu Y, Wang JX, Ren XY, Wei XY, J. Anal. Appl. Pyrolysis, 127, 82 (2017)
  2. Setyawan D, Yoo JH, Kim SD, Cho HK, Rhim YJ, Lim JH, Lee SH, Chun DH, Korean J. Chem. Eng., 56, 547 (2018)
  3. Han SW, Seo MW, Park SJ, Son SH, Yoon SJ, et al., Korean J. Chem. Eng., 57, 874 (2019)
  4. Guan G, Kaewpanha M, Hao X, Abudula A, Renew. Sust. Energ. Rev., 58, 450 (2016)
  5. Anis S, Zainal ZA, Renew. Sust. Energ. Rev., 15, 2355 (2011)
  6. Oh G, Park SY, Seo MW, Ra HW, Mun TY, Lee JG, Yoon SJ, Int. J. Green Energy, 16, 333 (2019)
  7. Oh G, Park SY, Seo MW, Kim YK, Ra HW, Lee JG, Yoon SJ, Renew. Energy, 86, 841 (2016)
  8. Rios MLV, Gonzalez AM, Lora EES, del Olmo OAA, Biomass Bioenerg., 108, 345 (2018)
  9. Schmidt S, Giesa S, Drochner A, Vogel H, Catal. Today, 175(1), 442 (2011)
  10. Heo DH, Lee R, Hwang JH, Sohn JM, Catal. Today, 265, 95 (2016)
  11. Quitete CPB, Bittencourt RCP, Souza MMVM, Catal. Lett., 145(2), 541 (2015)
  12. Kannari N, Oyama Y, Takarada T, Int. J. Hydrog. Energy, 42(15), 9611 (2017)
  13. Guan G, Chen G, Kasai Y, Lim EWC, Hao H, Kaewpanha MA, Fushimi AC, Tsutsumi A, Appl. Catal. B: Environ., 115-116, 1519 (2012)
  14. Balakrishnan M, Batra VS, Hargreaves JSJ, Pulford ID, Green Chem., 13, 16 (2011)
  15. Bepari S, Pradhan NC, Dalai AK, Catal. Today, 291, 36 (2017)
  16. Ashok J, Kathiraser Y, Ang ML, Kawi S, Catal. Sci. Technol., 5, 4398 (2015)
  17. Lee HJ, Kim WH, Lee KB, Yoon WL, Korean Chem. Eng. Res., 56(6), 914 (2018)
  18. Lee SH, Lim H, Kim SD, Jeon CH, Korean Chem. Eng. Res., 52(2), 233 (2014)
  19. Herman AP, Yusup S, Shahbaz M, Chem. Eng. Trans., 52, 1249 (2016)
  20. Blissett RS, Rowson NA, Fuel, 97, 1 (2012)
  21. Artetxe M, Alvarez J, Nahil MA, Olazar M, Williams PT, Energy Conv. Manag., 136, 119 (2017)
  22. Swierczynski D, Courson C, Kiennemann A, Chem. Eng. Process., 47(3), 508 (2008)
  23. Dieuzeide ML, Laborde M, Amadeo N, Cannilla C, Bonura G, Frusteri F, Int. J. Hydrog. Energy, 41(1), 157 (2016)
  24. Do JY, Kwak BS, Park NK, Lee TJ, Lee ST, Jo SW, Cha MS, Jeon MK, Kang M, Int. J. Hydrog. Energy, 42(36), 22687 (2017)
  25. Pala LPR, Wang Q, Kolb G, Hessel V, Renew. Energy, 101, 484 (2017)
  26. Zamboni I, Courson C, Kiennemann A, Appl. Catal. B: Environ., 203, 154 (2017)
  27. Adnan MA, Muraza O, Razzak SA, Hossain MM, de Lasa HI, Energy Fuels, 31(7), 7471 (2017)
  28. Ahmed T, Xiu SN, Wang LJ, Shahbazi A, Fuel, 211, 566 (2018)
  29. Ashok J, Kawi S, Appl. Catal. A: Gen., 490, 24 (2015)
  30. Rodemerck U, Scheider M, Linke D, Catal. Commun., 102, 98 (2017)
  31. Josuinkas FM, Quitete CPB, Ribeiro NFP, Souza MMVM, Fuel Process. Technol., 121, 76 (2014)
  32. Park SY, Oh G, Kim K, Seo MW, Ra HW, Mun TY, Lee JG, Yoon SJ, Renew. Energy, 105, 76 (2017)