화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.5, 885-898, May, 2021
Recent applications of the liquid phase plasma process
E-mail:
In this paper, the principle and application of plasma are briefly described, and in particular, the principle and practical application for plasma generated in liquid are introduced. Also, the research results of water treatment, synthesis of metal nanoparticle, synthesis of visible light-responsive photocatalyst, synthesis of energy material, and hydrogen gas production, which were tested using liquid phase plasma, are introduced. Various water pollutants were treated and hydrogen gas was produced using the strong chemical oxidizing species and ultraviolet rays in the plasma field generated in the reactant aqueous solution during the liquid phase plasma (LPP) process. The effects of plasma discharge conditions, dissolved oxygen concentration, pH value, photocatalytic behavior, as well as the properties of organic solutions on the LPP reaction were investigated experimentally and reported. Based on these previous studies, metal nanoparticles were synthesized using hydrogen atom radicals as well as the numerous electrons in the plasma field generated during the LPP process. Additionally, these studies indicate that visible light-responsive photocatalysts can be obtained when metal nanoparticles are precipitated in TiO2. They also provide evidence that metal nanoparticles can be precipitated in various carbon materials for application as electrodes in secondary batteries and supercapacitors. Therefore, the LPP process has been successfully applied in various fields given that it can be easily and conveniently used, and presently it is being applied in several new fields and many possibilities for its future application are expected.
  1. Baroch P, Anita V, Saito N, Takai O, J. Electrostat., 66, 294 (2008)
  2. Hieda J, Saito N, Takai O, Surf. Coat. Tech., 202, 5343 (2008)
  3. Saito N, Hieda J, Takai O, Thin Solid Films, 518(3), 912 (2009)
  4. Pootawang P, Saito N, Takai O, Thin Solid Films, 519(20), 7030 (2011)
  5. Vijay M, Ananthapadmanabhan PV, Sreekumar KP, Appl. Surf. Sci., 255(23), 9316 (2009)
  6. Clements JS, Sato M, Davis RH, IEEE Trans. Ind. Appl., IA-23, 224 (1987)
  7. Yasukoka K, Haehara T, Katsuki J, Katsuki S, Namihira T, Kaneko T, Hatakeyama R, J. Plasma Fusion Res., 84, 666 (2008)
  8. Schoenbach K, Kolb J, Xiao S, Katsuki S, Minamitani Y, Joshi R, Plasma Sources Sci. Technol., 17, 024010 (2008)
  9. Namihira T, Sakai S, Yamaguchi T, Yamamoto K, Yamada C, Kiyan T, Sakugawa T, Katsuki S, IEEE Trans. Plasma Sci., 35, 614 (2007)
  10. Tsuji T, Mizuki T, Ozono S, Tsuji M, J. Photochem. Photobiol. A-Chem., 206, 134 (2009)
  11. Itatani R, Appl. Phys. Express, 69, 971 (2000)
  12. Laroussi M, IEEE Trans. Plasma Sci., 24, 1188 (1996)
  13. Clements JS, Sato M, Davis RH, IEEE Trans. Ind. Appl., IA-23, 224 (1987)
  14. Devins JC, Rzad SJ, Schwabe RJ, J. Appl. Phys., 52, 4531 (1981)
  15. Yasukoka K, Haehara T, Katsuki J, Katsuki S, Namihira T, Kaneko T, Hatakeyama R, J. Plasma Fusion Res., 84, 666 (2008)
  16. Hickling A, Ingram MD, Trans. Faraday Soc., 60, 783 (1964)
  17. Horikoshi S, Serpone N, RSC Adv., 7, 47196 (2017)
  18. Tsuji T, Mizuki T, Ozono S, Tsuji M, J. Photochem. Photobiol. A-Chem., 206, 134 (2009)
  19. Gornushkin IB, Panne U, Spectroc. Acta Pt. B-Atom. Spectr., 65, 345 (2000)
  20. Saito G, Akiyama T, J. Nanomater., 2015, 1 (2015)
  21. Sathyanarayanan G, Haapala M, Dixon C, Wheeler AR, Sikanen TM, Adv. Mater. Technol., 5: 2000451 (2020).
  22. Mariotti N, Bonomo M, Fagiolari L, Barbero N, Gerbaldi C, Bella F, Barolo C, Green Chem., 22, 7168 (2020)
  23. Dokouzis A, Bella F, Theodosiou K, Gerbaldi C, Leftheriotis G, Mater. Today Energy, 15, 100365 (2020)
  24. Yang Z, Luo Y, Gao X, Wang R, Chem. Electro. Chem., 7, 2599 (2020)
  25. Galliano S, Bella F, Bonomo M, Viscardi G, Gerbaldi C, Boschloo G, Barolo C, Nanomaterials, 10, 1585 (2020)
  26. Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C, Langmuir, 35(25), 8210 (2019)
  27. Locke BR, Sato M, Sunka P, Hoffmann MR, Chang JS, Ind. Eng. Chem. Res., 45(3), 882 (2006)
  28. Noack J, Vogel A, IEEE J. Quantum Electron., 35, 1156 (1999)
  29. Mukasa S, Nomura S, Toyota H, Jpn. J. Appl. Phys., 46, 6015 (2007)
  30. Maehara T, Toyota H, Kuramoto M, Iwamae A, Tadokoro A, Mukasa S, Yamashita H, Kawashima A, Nomura S, Jpn. J. Appl. Phys., 45, 8864 (2006)
  31. Sun SH, Jung SC, Korean J. Chem. Eng., 33(3), 1075 (2016)
  32. Kim SC, Park YK, Kim BH, An KH, Lee H, Lee SJ, Jung SC, J. Nanosci. Nanotechnol., 17, 2578 (2017)
  33. Lee H, Park SH, Kim SJ, Park YK, Kim BJ, An KH, Ki SJ, Jung SC, Int. J. Hydrog. Energy, 40(1), 754 (2015)
  34. Ki SJ, Park YK, Kim JS, Lee WJ, Lee H, Jung SC, Chem. Eng. J., 377, 120087 (2019)
  35. Kim SC, Park YK, Kim BH, Kim HG, Lee WJ, Lee H, Jung SC, Korean J. Chem. Eng., 35(3), 750 (2018)
  36. Ki SJ, Jeon KJ, Park YK, Park H, Jeong S, Lee H, Jung SC, J. Environ. Manage., 203, 880 (2017)
  37. Lee H, Park IS, Bang HJ, Park YK, Cho EB, Kim BJ, Jung SC, Appl. Surf. Sci., 481, 625 (2019)
  38. Chung KH, Park H, Jeon KJ, Park YK, Jung SC, Catal. Today, 307, 131 (2018)
  39. Chung KH, Jeong S, Lee H, Kim SJ, Jeon KJ, Park YK, Jung SC, Int. J. Hydrog. Energy, 42(38), 24099 (2017)
  40. Lee H, Park YK, Kim JS, Park YH, Jung SC, Environ. Res., 169, 256 (2019)
  41. Lee H, Park YK, Kim SJ, Kim BH, Jung SC, Surf. Coat. Technol., 307, 1018 (2016)
  42. Lee H, Park SH, Cheong CJ, Kim SJ, Seo SG, Park YK, Jung SC, Ozone-Sci. Eng., 36, 244 (2014)
  43. Potocky S, Saito N, Takai O, Thin Solid Films, 518(3), 918 (2009)
  44. Lung K, Huang JC, Tien DC, Liao CY, Tseng KH, et al., J. Alloy. Compd., 434, 655 (2007)
  45. Kim SC, Park YK, Kim BH, An KH, Lee H, Lee SJ, Jung SC, J. Nanosci. Nanotechnol., 17, 2578 (2017)
  46. Lee SJ, Lee H, Jeon KJ, Park H, Park YK, Jung SC, Nanoscale Res. Lett., 11, 344 (2016)
  47. Xu Z, Shen C, Tian Y, Shi X, Gao HJ, Nanoscale, 2, 1027 (2010)
  48. Bharath G, madhu R, Chen SM, Veeramani V, Mangalaraja D, Ponpandian N, J. Mater. Chem. A, 3, 15529 (2015)
  49. Nensebaa F, Patrito N, Page YL, L’Ecuyer P, Wang D, J. Mater. Chem., 14, 3378 (2014)
  50. Ma L, Liu C, Liao J, Lua T, Xing W, Zhang J, Electrochim. Acta, 54, 57274 (2009)
  51. Lee H, Park YK, Kim SJ, Kim BH, Jung SC, Surf. Coat. Technol., 307, 1018 (2016)
  52. Ki SJ, Jeon KJ, Park YK, Park H, Jeong S, Lee H, Jung SC, J. Environ. Manage., 203, 880 (2017)
  53. Kim BH, Park YK, An KH, Lee H, Jung SC, Sci. Adv. Mater., 8, 1769 (2016)
  54. Chung KH, Park IS, Bang HJ, Park YK, Kim SJ, Kim BJ, Jung SC, Sci. Total Environ., 676, 190 (2019)
  55. Chung KH, Jeong S, Kim BJ, Kim JS, Park YK, Jung SC, Int. J. Hydrog. Energy, 43(11), 5873 (2018)
  56. Jeong S, Chung KH, Lee H, Park H, Jeon KJ, Park YK, Jung SC, ACS Sustainable Chem. Eng., 5, 3659 (2017)
  57. Chung KH, Kim BJ, Kim SJ, Park YK, Jung SC, Int. J. Hydrog. Energy, 45, 8595 (2018)
  58. Rahim I, Nomura S, Mukasa S, Toyota H, Appl. Therm. Eng., 90, 120 (2015)
  59. Sakugawa T, Aoki N, Akiyama H, Ishibashi K, Watanabe M, Kouda A, Suematsu K, IEEE Trans. Plasma Sci., 42, 792 (2014)