화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.5, 899-905, May, 2021
Green and mild production of 5-aminolevulinic acid from algal biomass
E-mail:
Algal biomass was converted into 5-aminolevulinic acid (5-ALA) in five chemical steps: conversion to 5-(chloromethyl)furfural (5-CMF), ammoniation, ring-opening (photo-oxidation), reduction, and hydrolyzation. Among them, we mainly focused on the 5-CMF production and the following ammoniation. To our knowledge, the mixed solvent catalytic system of deep eutectic solvent (DES) and low concentration hydrochloric acid is the first reported for the synthesis of 5-CMF from algal biomass, providing a 24.6% 5-CMF yield at 120 oC for 5 h. Potassium phthalimide (KPI) was employed as an ammoniation reagent with superb selectivity and activity instead of conventional sodium azide (NaN3). Optimizing the experimental design, a 23.7% 5-ALA yield along with high purity (>96%) was achieved from 5-CMF, and the total 5-ALA yield was 5.8% from algal biomass. This work provides a green and mild pathway for 5- ALA production from algal biomass.
  1. Douki T, Onuki J, Medeiros MH, Bechara EJ, Cadet J, Di Mascio P, Chem. Res. Toxicol., 11, 150 (1998)
  2. Sasaki K, Watanabe M, Tanaka T, Tanaka T, Appl. Microbiol. Biotechnol., 58(1), 23 (2002)
  3. Thompson DI, Edwards TJ, van Staden J, Plant Growth Regul., 49, 269 (2006)
  4. Sasikala C, Ramana CV, Rao PR, Biotechnol. Prog., 10(5), 451 (1994)
  5. Takeya H, Ueki H, Miyanari S, Shimizu T, Kojima M, J. Photochem. Photobiol. A-Chem., 94, 167 (1996)
  6. Fukuda H, Casas A, Batlle A, Int. J. Biochem. Cell Biol., 37, 272 (2005)
  7. Tetard MC, Vermandel M, Mordon S, Lejeune JP, Reyns N, Photodiagn. Photodyn. Ther., 11, 319 (2014)
  8. Liu SL, Zhang GM, Li XK, Zhang J, Appl. Microbiol. Biotechnol., 98(17), 7349 (2014)
  9. Ren J, Zhou L, Wang C, Lin C, Li Z, Zeng AP, ACS Synth. Biol., 7, 2750 (2018)
  10. Jahn D, Febs Lett., 314, 77 (1992)
  11. Kawakami H, Ebata T, Matsushita H, Agric. Biol. Chem., 55, 1687 (1991)
  12. Herdeis C, Dimmerling A, Arch. Pharm., 317, 304 (1984)
  13. Yoo CG, Zhang S, Pan X, RSC Adv., 7, 300 (2017)
  14. Xiong C, Sun Y, Du J, Chen W, Si Z, Gao H, Tang X, Zeng X, Korean J. Chem. Eng., 35(6), 1312 (2018)
  15. Sun Y, Xiong C, Chen H, Zeng X, Tang X, Lei T, Lin L, Korean J. Chem. Eng., 34(7), 1924 (2017)
  16. Kim B, Yang J, Kim M, Lee JW, Bioresour. Technol., 303, 122898 (2020)
  17. Ali M, Watson IA, Energy Technol., 4, 319 (2016)
  18. Kim MJ, Yang JW, Kim BR, Lee JW, Korean J. Chem. Eng., 37(11), 1933 (2020)
  19. Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
  20. Park J, Kim B, Chang YK, Lee JW, Bioresour. Technol., 230, 8 (2017)
  21. Cottier L, Descotes G, Eymard L, Rapp K, Synthesis, 3, 303 (1995)
  22. Wettstein SG, Alonso DM, Gurbuz EI, Dumesic JA, Curr. Opin. Chem. Eng., 1, 218 (2012)
  23. Zai Y, Feng Y, Zeng X, Tang X, Sun Y, Lin L, RSC Adv., 9, 10091 (2019)
  24. Mascal M, Nikitin EB, Angew. Chem.-Int. Edit., 47, 7924 (2008)
  25. Mascal M, Nikitin EB, ChemSusChem, 2, 859 (2009)
  26. Mascal M, Nikitin EB, ChemSusChem, 2, 423 (2009)
  27. Mascal M, ACS Sustainable Chem. Eng., 7, 5588 (2019)
  28. Mascal M, Dutta S, Green Chem., 13, 40 (2011)
  29. Jeong HI, Park YK, Korean J. Chem. Eng., 37(7), 1212 (2020)
  30. Jiang S, Zeng Z, Xue W, Zhang W, Zhou Z, Korean J. Chem. Eng., 37(9), 1482 (2020)
  31. Unlu AE, Arıkaya A, Altundag A, Takac S, Korean J. Chem. Eng., 37(1), 46 (2020)
  32. Zuo M, Li Z, Jiang Y, Tang X, Zeng X, Sun Y, Liu L, RSC Adv., 6, 27004 (2016)
  33. Han L, Zhou Z, J. Mater. Environ. Sci., 10, 182 (2019)
  34. Yu X, Zhou Z, Phosphorus, Sulfur, and Silicon and the Related Elements, 193, 387 (2018).
  35. Ha HJ, Lee SK, Ha YJ, Park JW, Synth. Commun., 24, 2557 (1994)
  36. Bodachivskyi I, Kuzhiumparambil U, Williams DBG, Chem-SusChem, 11, 642 (2018)
  37. Bodachivskyi I, Kuzhiumparambil U, Williams DBG, Fuel Process. Technol., 195, 106159 (2019)
  38. Zuo M, Le K, Feng Y, Xiong C, Li Z, Zeng X, Tang X, Sun Y, Lin L, Ind. Crop. Prod., 112, 18 (2018)
  39. Yu X, Gao X, Tao R, Peng L, Catalysts, 7, 182 (2017)
  40. Yu X, Peng L, Gao X, He L, Chen K, RSC Adv., 8, 15762 (2018)
  41. Zhang XM, Eren NM, Kreke T, Mosier NS, Engelberth AS, Kilaz G, Bioenerg. Res., 10, 1018 (2017)
  42. Zuo M, Jia W, Feng Y, Zeng X, Tang X, Sun Y, Lin L, Renew. Energy, 164, 23 (2020)
  43. Le K, Zuo M, Song XQ, Zeng XH, Tang X, Sun Y, Lei TZ, Lin L, J. Chem. Technol. Biotechnol., 92(12), 2929 (2017)
  44. Leng EW, Mao M, Peng Y, Li XM, Gong X, Zhang Y, Chemistryselect, 4, 181 (2019)
  45. Hu L, Sun Y, Lin L, Liu SJ, Biomass Bioenerg., 47, 289 (2012)
  46. Chen B, Xu G, Zheng Z, Wang D, Zou C, Cheng C, Ind. Crop. Prod., 129, 503 (2019)
  47. Chang C, Deng L, Xu G, Ind. Crop. Prod., 117, 197 (2018)
  48. Tang X, Zuo M, Li Z, Liu H, Xiong C, Zeng X, Sun Y, Hu L, Liu S, Lei T, Lin L, ChemSusChem, 10, 2696 (2017)