화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.5, 997-1005, May, 2021
Platform chemicals production from lipid-extracted Chlorella vulgaris through an eco-friendly catalyst
E-mail:
Microalgae are a widely available, renewable, and sustainable resource for bioenergy which may be used as a carbon-neutral alternative. We conducted hydrothermal conversion with MSA to obtain levulinic (LA) and formic acids (FA) from the lipid-extracted Chlorella vulgaris. Based on our analysis of reciprocal interactions between reaction conditions, maximum LA yields were obtained at high temperature, mid-range catalyst concentration, and mid-/longrange reaction time. Maximum FA yields were obtained at high temperature, high-range acid concentration, and short-/ mid-range time. Using the Box-Behnken method to optimize the reaction, yields of 39.17% for LA and 20.19% for FA were obtained with 5% biomass, 0.5M MSA at 195 °C for 35 min. Moreover, the effect of CSF on yield of LA and FA could be suitably represented by Sigmoidal equations with high R2. Overall, the application of lipid-extracted microalgae residue and eco-friendly MSA may prove useful for platform chemicals production.
  1. Morone A, Apte M, Pandey RA, Renew. Sust. Energ. Rev., 51, 548 (2015)
  2. van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG, Chem. Rev., 113(3), 1499 (2013)
  3. Park M, Kim S, Jeong G, Algal Res., 31, 116 (2018)
  4. Werpy TA, Holladay JE, White JF, National Renewable Energy Laboratory: Golden, CO (2004).
  5. Mukherjee A, Dumont MJ, Raghauan V, Biomass Bioenerg., 72, 143 (2015)
  6. Bozell JJ, Petersen GR, Green Chem., 12(4), 539 (2010)
  7. Kamm B, Gruber PR, Kamm M, Biorefineries-industrial processes and products, Wiley-VCH Weinheim (2006).
  8. Hayes G, Becer CR, Polym. Chem., 11, 4068 (2020)
  9. Liu X, Li S, Liu Y, Cao Y, Chin. J. Catal., 36(9), 1461 (2015)
  10. Yun J, Li W, Xu Z, Jin FM, Open J. Adv. Mater. Res., 860, 485 (2014)
  11. Yun J, Jin F, Kishita A, Tohji K, Enomoto H, J. Phys. Conference Series, 215(1), 012126 (2010)
  12. Joo F, ChemSusChem, 1(10), 805 (2008)
  13. Park MR, Kim HS, Kim SK, Jeong GT, Fuel Process. Technol., 172, 115 (2018)
  14. Rackemann DW, Doherty WO, Biofuel. Bioprod. Bior., 5(2), 198 (2011)
  15. Moens L, Proceedings of the 2002 Sugar Processing Research Conference held in New Orleans, USA, 26 (2002).
  16. Ho SH, Li PJ, Liu CC, Chang JS, Bioresour. Technol., 145, 142 (2013)
  17. Wang JJ, Tan ZC, Zhu CC, Miao G, Kong LZ, Sun YH, Green Chem., 18(2), 452 (2016)
  18. Jeong G, Kim S, Oh B, Algal Res., 51, 102044 (2020)
  19. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS, Bioresour. Technol., 135, 191 (2013)
  20. Im H, Kim B, Lee JW, Bioresour. Technol., 193, 386 (2015)
  21. Jeong G, Kim S, Bioresour. Technol, 313, 123684 (2020)
  22. Rihko-Struckmann LK, Oluyinka O, Sahni A, McBride K, Fachet M, Ludwig K, Sundmacher K, RSC Adv., 10(42), 24753 (2020)
  23. Singh J, Gu S, Renew. Sust. Energ. Rev., 14(9), 2596 (2010)
  24. Simas-Rodrigues C, Villela HD, Martins AP, Marques LG, Colepicolo P, Tonon AP, J. Exp. Bot., 66(14), 4097 (2015)
  25. Safi C, Zebib B, Merah O, Pontalier P, Vaca-Garcia C, Renew. Sust. Energ. Rev., 35, 265 (2014)
  26. Seon G, Joo HW, Kim YJ, Park J, Chang YK, Biotechnol. Prog., 35, e2729 (2019)
  27. Liang YN, Sarkany N, Cui Y, Biotechnol. Lett., 31(7), 1043 (2009)
  28. Wu H, Li J, Liao Q, Fu Q, Liu Z, Energy Conv. Manag., 205, 112373 (2020)
  29. Kim T, Oh Y, Lee JW, Chang YK, Algal Res., 26
  30. Amoah J, Hasunuma T, Ogino C, Kondo A, Biochem. Eng. J., 142, 117 (2019)
  31. Kim MJ, Yang JW, Kim BR, Lee JW, Korean J. Chem. Eng., 37(11), 1933 (2020)
  32. Gernon M, Green Chem., 1(3), 127 (1999)
  33. Rackemann DW, Bartley JP, Doherty WO, Ind. Crop. Prod., 52, 46 (2014)
  34. Kim HS, Kim SK, Jeong GT, J. Ind. Eng. Chem., 63, 48 (2018)
  35. Rackemann DW, Bartley JP, Harrison MD, Doherty WO, RSC Adv., 6(78), 74525 (2016)
  36. Kim HS, Park MR, Kim SK, Jeong GT, Korean J. Chem. Eng., 35(6), 1290 (2018)
  37. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Sponsored by the US Department of Energy (2012).
  38. Jeong GT, Yang HS, Park DH, Bioresour. Technol., 100(1), 25 (2009)
  39. Jeong GT, Kim SK, Korean J. Chem. Eng., 37(10), 1743 (2020)
  40. Pedersen M, Meyer AS, New Biotechnol., 27(6), 739 (2010)
  41. Kim HS, Jeong GT, Korean J. Chem. Eng., 35(11), 2232 (2018)
  42. Bjerre AB, Soerensen E, Ind. Eng. Chem. Res., 31(6), 1574 (1992)
  43. van Zandvoort I, Wang Y, Rasrendra CB, van Eck ER, Bruijnincx PC, Heeres HJ, Weckhuysen BM, ChemSusChem, 6(9), 1745 (2013)
  44. Mthembu LD, Durban University of Technology (2015).
  45. Kim HS, Kim SK, Jeong GT, RSC Adv., 8, 3198 (2018)
  46. Hoang TMC, Lefferts L, Seshan K, ChemSusChem, 6, 1651 (2013)