화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.5, 1043-1051, May, 2021
Comparison of carbon molecular sieve and zeolite 5A for CO2 sequestration from CH4/CO2 mixture gas using vacuum pressure swing adsorption
E-mail:
The performance of carbon molecular sieves and zeolite 5A was compared in a four-bed vacuum pressure swing adsorption process. The purpose of the process is to sequester CO2 from a CH4/CO2 mixture gas, such as coal bed methane or landfill gas. This study investigated the effects of the design variables and operating variables on methane purity, recovery, and specific power through simulations of the process using the two adsorbents. The adopted design variables for the investigation are the packing bed length and the diameter of the adsorption bed, and the selected operating variables are the adsorption pressure and vacuum pressure. The simulation results show that zeolite 5A is better than carbon molecular sieve in terms of power, especially under low-pressure operating conditions with a vacuum pressure of 1,000 Pa. However, carbon molecular sieves are better in terms of purity enhancement when the vacuum pressure is higher than approximately 2,000 Pa.
  1. Lu JG, Cheng MD, Ji Y, Hui Z, J. Fuel Chem. Technol., 37(6), 740 (2009)
  2. Casas N, Schell J, Joss L, Mazzotti M, Sep. Purif. Technol., 104, 183 (2013)
  3. Zaman M, Lee JH, Korean J. Chem. Eng., 30(8), 1497 (2013)
  4. Sun WN, Shen YH, Zhang DH, Yang HW, Ma H, Ind. Eng. Chem. Res., 54(30), 7489 (2015)
  5. Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714 (1993)
  6. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591 (1995)
  7. Jee JG, Lee SJ, Moon HM, Lee CH, Adsorption, 11, 415 (2005)
  8. Siriwardane RV, Shen MS, Fisher EP, Energy Fuels, 17(3), 571 (2003)
  9. Kim MB, Bae YS, Choi DK, Lee CH, Ind. Eng. Chem. Res., 45(14), 5050 (2006)
  10. Canevesi RLS, Andreassen KA, da Silva EA, Borba CE, Grande CA, Ind. Eng. Chem. Res., 57(23), 8057 (2018)
  11. Alonso-Vicario A, Ochoa-Gomez JR, Gil-Rio S, et al., Microporous Mesoporous Mater., 134(1-3), 100 (2010)
  12. Montanari T, Finocchio E, Salvatore E, Garuti G, Giordano A, Pistarino C, Busca G, Energy, 36(1), 314 (2011)
  13. Mofarahi M, Shokroo EJ, Pet. Coal, 55(3), 216 (2013)
  14. Hauchhum L, Mahanta P, Int. J. Energy Environ. Eng., 5, 349 (2014)
  15. Shokroo EJ, Farsani DJ, Meymandi HK, Yadollahi N, Korean J. Chem. Eng., 33(4), 1391 (2016)
  16. Knaebel SP, Ko D, Biegler LT, Adsorption, 11, 615 (2005)
  17. Jiang L, Biegler LT, Fox VG, AIChE J., 49(5), 1140 (2003)
  18. Jiang L, Fox VG, Biegler LT, AIChE J., 50(11), 2904 (2004)
  19. Jiang L, Biegler LT, Fox VG, Comput. Chem. Eng., 29(2), 393 (2005)
  20. Ko D, Siriwardane R, Biegler LT, Ind. Eng. Chem. Res., 42(2), 339 (2003)
  21. Ko D, Siriwardane R, Biegler LT, Ind. Eng. Chem. Res., 44(21), 8084 (2005)
  22. Nikolic D, Giovanoglou A, Georgiadis MC, Kikkinides ES, Ind. Eng. Chem. Res., 47(9), 3156 (2008)
  23. Agarwal A, Biegler LT, Zitney SE, Ind. Eng. Chem. Res., 48(5), 2327 (2009)
  24. Kim S, Ko D, Moon I, Ind. Eng. Chem. Res., 55(48), 12444 (2016)
  25. Ko Daeho, Ind. Eng. Chem. Res., 55(33), 8967 (2016)
  26. Ko D, Ind. Eng. Chem. Res., 55(4), 1013 (2016)
  27. Process Systems Enterprise, gPROMS, 1997-2017, www.psenterprise.com/gPROMS.
  28. Delgado JA, Rodrigues AE, Chem. Eng. Sci., 64, 4452 (2008)
  29. Ahn EA, Master Dissertation, Korea University, Republic of Korea (2006).