화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.5, 1059-1065, May, 2021
Superior high voltage LiNi0.6Co0.2Mn0.2O2 cathode using Li3PO4 coating for lithium-ion batteries
E-mail:
Lithium phosphate (Li3PO4) is a well-known solid electrolyte for lithium-ions. In this study, we analyzed the effects of Li3PO4 coating on the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 (NCM), a nickel-rich cathode. In particular, the coated materials exhibited enhanced cycle stability at high voltages and possessed superior rate capability. Among the cathodes with different coating levels (0.5-3 wt%), the one with 2 wt% of Li3PO4 provided the best rate capability, possibly because it is a moderate coating level at which the formation of an excessive cathode electrolyte interface (CEI) is suppressed. Thus, an optimal coating was achieved such that the inhibition in the ionic conduction by the excessive CEI is avoided, while the thickness of the coating layer, which can hinder the ionic transport as well, is minimal. The coated NCM effectively suppressed the formation of CEI, especially LiOH component with insulating nature, as revealed by X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy. As a result, the coated NCM retained more than 70% of the relative capacity, while pristine NCM retained only 35.1% relative capacity after cycling at 3.0-4.9 V vs. Li/Li+ for 200 cycles. This study demonstrates that an artificial CEI layer is effective for enhancing the high-voltage stability and rate capability of Ni-rich NCM cathodes.
  1. Tran TH, Harmand S, Desmet B, Filangi S, Appl. Therm. Eng., 63, 551 (2014)
  2. Vayrynen A, Salminen J, J. Chem. Thermodyn., 46, 80 (2012)
  3. Alaoui C, IEEE Trans. Veh. Technol., 62, 98 (2012)
  4. Deng BW, Wang H, Ge WJ, Li X, Yan XX, Chen T, Qu MZ, Peng GC, Electrochim. Acta, 236, 61 (2017)
  5. Chen ZQ, Wang J, Huang JX, Fu T, Sun GY, Lai SB, Zhou R, Li K, Zhao JB, J. Power Sources, 363, 168 (2017)
  6. Dixit M, Markovsky B, Schipper F, Aurbach D, Major DT, J. Phys. Chem. C, 121, 22628 (2017)
  7. Duan JG, Hu GR, Cao YB, Tan CP, Wu C, Du K, Peng ZD, J. Power Sources, 326, 322 (2016)
  8. Cho W, Kim SM, Song JH, Yim T, Woo SG, Lee KW, Kim JS, Kim YJ, J. Power Sources, 282, 45 (2015)
  9. Lee YS, Shin WK, Kannan AG, Koo SM, Kim DW, ACS Appl. Mater. Interfaces, 7, 13944 (2015)
  10. Qin C, Cao J, Chen J, Dai G, Wu T, Chen Y, Tang Y, Li A, Chen Y, Dalton Trans., 45, 9669 (2016)
  11. Wang D, Li XH, Wang ZX, Guo HJ, Xu Y, Fan YL, Electrochim. Acta, 196, 101 (2016)
  12. Tao T, Chen C, Yao Y, Liang B, Lu S, Chen Y, Ceram. Int., 43, 15173 (2017)
  13. Mao L, Ai L, Li S, Hou Q, Xie Y, Liang Y, Xie J, AIP Conf. Proc., 1944, 020049 (2018)
  14. Xu LP, Zhou F, Zhou HB, Kong JZ, Wang QZ, Yan GZ, Electrochim. Acta, 289, 120 (2018)
  15. Ran QW, Zhao HY, Hu YZ, Shen QQ, Liu W, Liu JT, Shu XH, Zhang ML, Liu SS, Tan M, Li H, Liu XQ, Electrochim. Acta, 289, 82 (2018)
  16. Liang L, Sun X, Zhang J, Hou L, Sun J, Liu Y, Wang S, Yuan C, Adv. Eng. Mater., 9, 180284 (2019)
  17. Liang L, Zhang W, Zhao F, Denis DK, Zaman FU, Hou L, Yuan C, Adv. Mater. Interfaces, 7, 190174 (2020)
  18. Wang G, Chen C, Chen Y, Kang X, Yang C, Wang F, Liu Y, Xiong X, Angew. Chem.-Int. Edit., 59, 2055 (2020)
  19. Kim Y, Cho J, J. Electrochem. Soc., 154(6), A495 (2007)
  20. Ma X, Wang C, Han X, Sun J, J. Alloy. Compd., 453, 352 (2008)
  21. Song HG, Kim JY, Kim KT, Park YJ, J. Power Sources, 196(16), 6847 (2011)
  22. Kim KC, Jegal JP, Bak SM, Roh KC, Kim KB, Electrochem. Commun., 43, 113 (2014)
  23. Chong J, Xun S, Zhang J, Song X, Xie H, Battaglia V, Wang R, Chem. Eur. J., 20, 7479 (2014)
  24. Bian XF, Fu Q, Bie XF, Yang PL, Qiu HL, Pang Q, Chen G, Du F, Wei YJ, Electrochim. Acta, 174, 875 (2015)
  25. Liang L, Sun X, Wu C, Hou L, Sun J, Zhang X, Yuan C, ACS Appl. Mater. Interfaces, 10, 5498 (2018)
  26. Ayu NI, Kartini E, Prayogi LD, Faisal M, Ionics, 22, 1051 (2016)
  27. Kuwata N, Iwagami N, Tanji Y, Matsuda Y, Kawamura J, J. Electrochem. Soc., 157(4), A521 (2010)
  28. Kobayashi Y, Miyashiro H, Takei K, Shigemura H, Tabuchi M, Kageyama H, Iwahori T, J. Electrochem. Soc., 150(12), A1577 (2003)
  29. Lee SW, Kim MS, Jeong JH, Kim DH, Chung KY, Roh KC, Kim KB, J. Power Sources, 360, 206 (2017)
  30. Tang ZF, Wu R, Huang PF, Wang QS, Chen CH, J. Alloy. Compd., 693, 1157 (2017)
  31. Zou P, Lin Z, Fan M, Wang F, Liu Y, Xiong X, Appl. Surf. Sci., 504, 144506 (2020)
  32. Zhang W, Liang L, Zhao F, Liu Y, Hou L, Yuan C, Electrochim. Acta, 340, 135871 (2020)
  33. Liu J, Manthiram A, J. Electrochem. Soc., 156(1), A66 (2009)
  34. Zhu X, Shang K, Jiang X, Ai X, Yang H, Cao Y, Ceram. Int., 40, 11245 (2014)
  35. Jo CH, Cho DH, Noh HJ, Yashiro H, Sun YK, Myung ST, Nano Res., 8, 1464 (2015)
  36. Wang ZY, Liu EZ, He CN, Shi CS, Li JJ, Zhao NQ, J. Power Sources, 236, 25 (2013)
  37. Ding F, Li J, Deng F, Xu G, Liu Y, Yang K, Kang F, ACS Appl. Mater. Interfaces, 9, 27936 (2017)
  38. Aurbach D, Levi MD, Levi E, Teller H, Markovsky B, Salitra G, Heider U, Heider L, J. Electrochem. Soc., 145(9), 3024 (1998)
  39. Spath T, Becker D, Schulz N, Hausbrand R, Jaegermann W, Adv. Mater. Interfaces, 4, 170056 (2017)
  40. Zhang JN, Li Q, Wang Y, Zheng J, Yu X, Li H, Energy Storage Mater., 14, 1 (2018)
  41. Chen JC, Zhu L, Jia D, Jiang XB, Wu YM, Hao QL, Xia XF, Ouyang Y, Peng LM, Tang WP, Liu T, Electrochim. Acta, 312, 179 (2019)
  42. Hata JI, Hirayama M, Suzuki K, Dupre N, Guyomard D, Kanno R, Batter. Supercaps, 2, 454 (2019)
  43. Morgan WE, Van Wazer JR, Stec WJ, J. Am. Chem. Soc., 95, 751 (1973)
  44. Contour J, Salesse A, Froment M, Garreau M, Thevenin J, Warin D, J. Microsc. Spect. Elec., 4, 483 (1979)