- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.31, No.4, 181-187, April, 2021
Simultaneous Extraction and In-Situ Transesterification of Chlorella vulgaris Using Microwave-Assisted Method for Biodiesel Production
E-mail:
This research aims to study the simultaneous extraction and transesterification of Chlorella vulgaris (C. vulgaris) using microwave irradiation with methanol as solvent and potassium hydroxide (KOH) as catalyst. The microwave-assisted insitu transesterification of C. vulgaris is assessed at various ratios of biomass-to-methanol, reaction times, and catalyst concentrations during the centrifugation and evaporation process. Gas chromatography-mass spectrometry (GC-MS) analysis is performed to confirm fatty acid methyl ester (FAME) composition. Biodiesel preparation is carried out by simultaneous extraction and transesterification of microalgae from C. vulgaris. The product is then characterized using Fourier transform infrared spectroscopy (FTIR) and proton nuclear magnetic resonance (1H-NMR); microalgae are observed using scanning electron microscopy (SEM). The highest amount of FAME is obtained at a biomass-to-methanol ratio of 1:12, reaction time of 40 min, and catalyst concentration of 2 wt%. Biodiesel shows conversion to about 77.64% of methyl ester (methyl myristate, methyl palmitoleate, methyl linoleate, methyl oleate, methyl arachidonate, and methyl 5,8,11,14,17-eicosapentanoate).
- Goldemberg J, Guardabassi P, Energ. Pol., 37, 10 (2009)
- Spolaore P, Joannis-Cassan C, Duran E, Isambert A, J. Biosci. Bioeng., 101(2), 87 (2006)
- Hossain AB, Salleh A, Am. J. Biochem. Biotechnol., 4, 250 (2008)
- Singh J, Gu S, Renew. Sust. Energ. Rev., 14, 2596 (2010)
- Patil PD, Gude VG, Mannarswamy A, Cooke P, Munson-McGee S, Nirmalakhandan N, Lammers P, Deng SG, Bioresour. Technol., 102(2), 1399 (2011)
- Amarni F, Kadi H, Innovat. Food Sci. Emerg. Tech., 11, 322 (2010)
- Kim J, Yoo G, Lee H, Lim J, Kim K, Kim CW, Park MS, Yang J, Biotechnol. Adv., 31, 862 (2013)
- Kumar R, Rao PH, Arumugam M, Front. Energ. Res., 2, 1 (2015)
- Lidstrom P, Tierney JP, Wathey B, Westman J, Tetrahedron, 57, 9225 (2001)
- Tierney JP, Lidstrom P, Blackwell Publishing, Oxford, England (2005).
- Mulbry M, Kondrad S, Buyer J, Luthria DL, J. Am. Oil Chem. Soc., 86, 909 (2009)
- Patil P, Reddy H, Muppaneni T, Ponnusamy S, Sun YQ, Dailey P, Cooke P, Patil U, Deng SG, Bioresour. Technol., 137, 278 (2013)
- Eskilsson CS, Bjorklund E, J. Chromatogr. A, 902, 227 (2000)
- Patil PD, Gude VG, Camacho LM, Deng S, Energy Fuels, 24, 1298 (2010)
- Refaat AA, El Sheltawy ST, Sadek KU, Int. J. Environ. Sci. Technol., 5, 315 (2008)
- Purnama A, Wijaya K, Tahir I, Suyono EA, Budiman A, Korean J. Chem. Eng., 37(3), 466 (2020)
- Zhang S, Zu YG, Fu YJ, Luo M, Zhang DY, Efferth T, Bioresour. Technol., 101(3), 931 (2010)
- Rushan NH, Yasin NHM, Sepian NRA, Said FM, Shafei NI, Indones. J. Chem., 19, 767 (2019)
- Purkan PE, Nidianti, Abdulloh A, Safa A, Retnowati W, Soemarjati W, Nurlaila H, Kim SW, Open Chem., 17, 919 (2019)
- Shah KA, Parikh JK. Maheria KC, Bioenergy Res., 7, 206 (2014)
- Knothe G, J. Am. Oil Chem. Soc., 77, 489 (2000)
- Knothe G, Fuel Process. Technol., 86(10), 1059 (2005)