Korean Journal of Materials Research, Vol.31, No.4, 209-218, April, 2021
Co-Precipitation Synthesis and Characterization of Strontium Lanthanum Vanadate Nanoparticles
E-mail:
Strontium lanthanum vanadate La1-xSrxVO3 (LSVO) is a promising anode material for electrochemical devices, especially for solid oxide fuel cells, thanks to its irregular electrical conductivity. However, the known synthesis methods are incapable of producing well-dispersed LSVO nanoparticles (NPs) with homogeneous size distribution, which partly impedes the applicability of the material. Thus, a new approach to synthesize LSVO NPs with such characteristics is of paramount importance. In the present work, we successfully prepare LSVO NPs with a high dispersion degree and homogeneous size distribution via a modified co-precipitation pathway, followed by hydrogen reduction at a temperature as low as 700 °C. The prepared LSVO NPs display uniform sizes in the range of 50 ~ 100 nm and do not contain any secondary phases, according to XRD analysis. The chemical mechanism of reactions that occur to form the LSVO is thoroughly highlighted. The work functions of NPs measured by the UPS analysis are in the 2.13 ~ 3.62 eV range, making the LSVO powders promising for use in thermionic devices. An explanation of the role of Sr substitution in work function values of LSVO is also proposed.
Keywords:strontium lanthanum vanadate;co-precipitation;perovskite;well-dispersed nanoparticle;work function
- Dougier P, Casalot A, J. Solid State Chem., 2, 396 (1970)
- Dougier P, Hagenmuller P, J. Solid State Chem., 15, 158 (1975)
- Sayer M, Chen P, Fletcher R, Mansingh A, J. Phys. C: Solid State Phys., 8, 2059 (1975)
- Webb JB, Sayer M, J. Phys. C: Solid State Phys., 9, 4151 (1976)
- Egdell RG, Harrison MR, Hill MD, Porte L, Wall G, J. Phys. C: Solid State Phys., 17, 2889 (1984)
- Mahajan AV, Johnston DC, Torgeson DR, Borsa F, Phys. Rev. B, 46, 10973 (1992)
- Inaba F, Arima T, Ishikawa T, Katsufuji T, Tokura Y, Phys. Rev. B, 52, R2221 (1995)
- Miyasaka S, Okuda T, Tokura Y, Phys. Rev. Lett., 85, 5388 (2000)
- Lekshmi IC, Gayen A, Hegde MS, J. Phys. Chem. Solids, 66, 1647 (2005)
- Fujioka J, Miyasaka S, Tokura Y, Phys. Rev. Lett., 97, 196401 (2006)
- Dao TM, Mondal PS, Takamura Y, Arenholz E, Lee J, Appl. Phys. Lett., 99, 112111 (2011)
- Liu CY, Tsai SY, Ni CT, Fung KZ, J. Electron. Mater, 46, 2301 (2017)
- Hu L, Wei R, Yan J, Wang D, Tang X, Luo X, Adv. Electron. Mater., 4, 170047 (2018)
- Mott NF, Pepper M, Pollitt S, Wallis RH, Adkins CJ, Proc. Math. Phys. Eng. Sci., 345, 169 (1975)
- Tamm K, Moller P, Nurk G, Lust E, J. Electrochem. Soc., 163(6), F586 (2016)
- Song SH, Yoon SE, Choi J, Kim BK, Park JS, Int. J. Hydrog. Energy, 39(29), 16534 (2014)
- Tamm K, Raudsepp R, Kanarbik R, Moller P, Nurk G, Lust E, ECS Trans., 57, 1185 (2013)
- Park JS, Hasson ID, Gross MD, Chen C, Vohs JM, Gorte RJ, J. Power Sources, 196(18), 7488 (2011)
- Parveen A, Gaur NK, Nigam AK, AIP Conference Proc., 1536, 1137 (2013)
- Ge XM, Chan SH, J. Electrochem. Soc., 156(3), B386 (2009)
- Liu CY, Tsai SY, Ni CT, Fung KZ, J. Aust. Ceram. Soc., 55, 97 (2019)
- Vo NM, Gross MD, J. Electrochem. Soc., 159(5), B641 (2012)
- Jung DH, Oh YJ, Park WS, Lee H, Curr. Appl. Phys., 20(12), 1453 (2020)
- Liu CY, Tsai SY, Ni CT, Fung KZ, Cho CY, Jpn. J. Appl. Phys., 58, SDDG03 (2019)
- Crans DC, Smee JJ, Gaidamauskas E, Yang LQ, Chem. Rev., 104(2), 849 (2004)
- Ma Y, Wang X, Stopic S, Wang M, Kremer D, Wotruba H, Friedrich B, Metals, 8, 994 (2018)
- Francavilla J, Chasteen ND, Inorg. Chem., 14, 2860 (1975)
- Komura A, Hayashi M, Imanaga H, Bull. Chem. Soc. Jpn., 50, 2927 (1977)
- Iannuzzi MM, Rieger PH, Inorg. Chem., 14, 2895 (1975)
- Britton HTS, Welford G, J. Chem. Soc., 758 (1940).
- Selbin J, Chem. Rev., 65, 153 (1965)
- Dean GA, Herringshaw JF, Talanta, 10, 793 (1963)
- Patnaik P, Handbook of inorganic chemicals, 1st ed., p.887, McGraw-Hill, New York, USA (2002).
- Sayer M. U.S. Patent No. US3944866A (1974).