Langmuir, Vol.36, No.50, 15247-15257, 2020
Protein Ligand-Induced Amplification in the 1/f Noise of a Protein-Selective Nanopore
Previous studies of transmembrane protein channels have employed noise analysis to examine their statistical current fluctuations. In general, these explorations determined a substrate-induced amplification in the Gaussian white noise of these systems at a low-frequency regime. This outcome implies a lack of slowly appearing fluctuations in the number and local mobility of diffusing charges in the presence of channel substrates. Such parameters are among the key factors in generating a low-frequency 1/f noise. Here, we show that a protein-selective biological nanopore exhibits a substrate-induced amplification in the 1/f noise. The modular composition of this biological nanopore includes a hydrophilic transmembrane protein pore fused to a water-soluble binding protein on its extramembranous side. In addition, this protein nanopore shows an open substate populated by a high-frequency current noise because of the flickering of an engineered polypeptide adaptor at the tip of the pore. However, the physical association of the protein ligand with the binding domain reversibly switches the protein nanopore from a high-frequency noise substate into a quiet substate. In the absence of the protein ligand, our nanopore shows a low-frequency white noise. Remarkably, in the presence of the protein ligand, an amplified low-frequency 1/f noise was detected in a ligand concentration-dependent fashion. This finding suggests slowly occurring equilibrium fluctuations in the density and local mobility of charge carriers under these conditions. Furthermore, we report that the excess in 1/f noise is generated by reversible switches between the noisy ligand-released substate and the quiet ligandcaptured substate. Finally, quantitative aspects of the low-frequency 1/f noise are in accord with theoretical predictions of the current noise analysis of protein channel-ligand interactions.