화학공학소재연구정보센터
Nature Materials, Vol.19, No.10, 1102-+, 2020
Resilient yet entirely degradable gelatin-based biogels for soft robots and electronics
Stretchable and biodegradable elastic biogels based on gelatin, glucose, glycerol and citric acid are realized, whose mechanical properties can be adapted to a broad range of applications in soft robotics and wearable electronics. Biodegradable and biocompatible elastic materials for soft robotics, tissue engineering or stretchable electronics with good mechanical properties, tunability, modifiability or healing properties drive technological advance, and yet they are not durable under ambient conditions and do not combine all the attributes in a single platform. We have developed a versatile gelatin-based biogel, which is highly resilient with outstanding elastic characteristics, yet degrades fully when disposed. It self-adheres, is rapidly healable and derived entirely from natural and food-safe constituents. We merge all the favourable attributes in one material that is easy to reproduce and scalable, and has a low-cost production under ambient conditions. This biogel is a step towards durable, life-like soft robotic and electronic systems that are sustainable and closely mimic their natural antetypes.