화학공학소재연구정보센터
Powder Technology, Vol.377, 233-243, 2021
Influence of holdup on gas and particle flow patterns in a spiral jet mill
Particle size reduction in spiral jet mills is induced by high velocity gas jets, causing interparticle and particle wall collisions leading to breakage. Despite extensive research on the design and operational parameters, the underlying mechanics of size reduction is still poorly understood. Discrete Element Method and Computational Fluid Dynamics are used here to analyse particle and fluid motions. A fast shearing dense particle bed is formed on the wall, with a transition to lean phase towards the centre of the mill. This necessitates four-way coupling of fluid and particle interactions for analysis. It is shown that increasing the depth of the particle bed reduces the fluid phase tangential velocity in the proximity of the classifier, as momentum is exchanged with circulating particles. The energy dissipation through particle collisions occurs mainly along the bed surface and in front of the grinding jet nozzles. (C) 2020 The Authors. Published by Elsevier B.V.