Science, Vol.369, No.6511, 1592-+, 2020
Rotational resonances in the H2CO roaming reaction are revealed by detailed correlations
Since its discovery 16 years ago, roaming has become a ubiquitous mechanism in molecular photochemistry. Its general features are now understood, but little detail is known about how the potential energy surface (PES) determines reaction outcomes. We performed detailed experiments on formaldehyde (H2CO) photodissociation and determined fully correlated quantum state distributions of the molecular hydrogen and carbon monoxide products. These experiments reveal previously undetected bimodal carbon monoxide rotational distributions. Insights from classical trajectory calculations demonstrate that these features arise from resonances as the PES directs the reaction into cis and trans O-C-H center dot center dot center dot H critical geometries, which produce rebound and stripping mechanisms, respectively. These subtle and pervasive effects demonstrate additional complexity in this prototypical roaming reaction, which we expect to be general. They also provide detailed benchmarks for predictive theories of roaming.