화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.97, 95-110, May, 2021
Antibacterial ferroelectric materials: Advancements and future directions
E-mail:
Ferroelectric functional materials are known for a wide range of applications including sensors, actuators, energy harvesting devices. Very recent studies based on ferroelectric materials for environmental cleaning and bacterial remediation add a further up-and-coming field of application of these materials. They possess several advantages over conventional methods such as biocompatible range and sustainability. Although the research area is relatively new, some substantial experimental work has been done in the last couple of years. The rationale and underlying mechanisms of different published reports were compiled and explained to offer a better understanding of the subject. The three major mechanisms can be divided into catalysis via a change in surface potential, mediated catalysis by the formation of reactive oxide species on the ceramic surface due to piezoelectric or pyroelectric excitation, and enhanced photocatalysis due to internal electric fields. Our goal is to provide a comprehensive report on ferroelectric materials application in the prevention of bacterial infections and to give an outlook on further possible research strategies.
  1. Xu Q, Li X, Jin Y, Sun L, Ding X, Liang L, Wang L, Nan K, Ji J, Chen H, Wang B, Nanoscale, 9, 19245 (2017)
  2. W.H.O. and the U.N. Children’s, pp.51 (2019).
  3. Steele R, WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene, (2018).
  4. Huijbers PMC, Blaak H, De Jong MCM, Graat EAM, Vandenbroucke-Grauls CMJE, De Roda Husman AM, Environ. Sci. Technol., 49, 11993 (2015)
  5. Nicolaou KC, Rigol S, J. Antibiot. (Tokyo), 153 (2018).
  6. Bax RP, Anderson R, Crew J, Fletcher P, Johnson T, Kaplan E, Knaus B, Kristinsson K, Malek M, Strandberg L, Nat. Med., 545 (1998).
  7. Coates AR, Halls G, Hu Y, Br. J. Pharmacol., 184 (2011).
  8. Cantas L, Shah SQA, Cavaco LM, Manaia CM, Walsh F, Popowska M, Garelick H, Burgmann H, Sørum H, Front. Microbiol., 4 (2013)
  9. Davies J, Microbiologia, 9 (1996).
  10. NA, Shock, 14, 246 (2000)
  11. Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussain T, Ali M, Rafiq M, Kamil MA, J. Chinese Med. Assoc., 7 (2018).
  12. Stephens B, MSystems, 1 (2016)
  13. Williams GJ, Hugo Russell, Ayliffe’s: Principles and Practice of Disinfection, Preservation and Sterilization, Springer, pp.485 2012.
  14. Siedenbiedel F, Tiller JC, Polymers (Basel)., 46 (2012).
  15. Zhao F, Zhao Y, Liu Y, Chang X, Chen C, Zhao Y, Small, 7, 1322 (2011)
  16. Park CM, Chu KH, Heo J, Her N, Jang M, Son A, Yoon Y, J. Hazard. Mater., 133 (2016).
  17. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL, Part. Fibre Toxicol., 11 (2014)
  18. Albers CE, Hofstetter W, Siebenrock KA, Landmann R, Klenke FM, Nanotoxicology, 7, 30 (2013)
  19. Vimbela GV, Ngo SM, Fraze C, Yang L, Stout DA, Int. J. Nanomedicine, 3941 (2017).
  20. Kalbacova M, Roessler S, Hempel U, Tsaryk R, Peters K, Scharnweber D, Kirkpatrick JC, Dieter P, Biomaterials, 28, 3263 (2007)
  21. Starr MB, Shi J, Wang X, Angew. Chem.-Int. Edit., 51, 5962 (2012)
  22. Wu JM, Sun YG, Chang WE, Lee JT, Nano Energy, 46
  23. Ikeda S, Takata T, Kondo T, Hitoki G, Hara M, Kondo JM, Domen K, Hosono H, Kawazoe H, Tanaka A, Chem. Commun., 20, 2185 (1998)
  24. Sharma M, Vaish R, Mater. Today Commun., 25 (2020)
  25. Sharma M, Singh G, Vaish R, J. Am. Ceram. Soc., 103(9), 4774 (2020)
  26. Sharma M, Singh VP, Kumar S, Vaish R, J. Appl. Phys., 127 (2020)
  27. Jaffe B, CW, JH, Piezoeletric ceramics, 3 (1971)
  28. Kao KC, Dielectric Phenomena in Solids (2004).
  29. Lines ME, Glass AM, Principles and Applications of Ferroelectrics and Related Materials, (2010).
  30. Varghese J, Whatmore RW, Holmes JD, J. Mater. Chem. C, 2618 (2013).
  31. Bowen CR, Kim HA, Weaver PM, Dunn S, Energy Environ. Sci, 25 (2014).
  32. Khan A, Abas Z, Kim HS, Oh IK, Smart Mater. Struct. (2016).
  33. Briscoe J, Dunn S, Nano Energy, 14, 15 (2014)
  34. Hwang GT, Park H, Lee JH, Oh S, Park KI, Byun M, Park H, Ahn G, Jeong CK, No K, Kwon H, Lee SG, Joung B, Lee KJ, Adv. Mater., 26(28), 4880 (2014)
  35. Bystrov VS, Bdikin IK, Heredia A, Pullar RC, Mishina ED, Sigov AS, Kholkin AL, Nanomedicine and Nanotoxicology, 187 (2012).
  36. Wu W, Wang ZL, Nat. Rev. Mater. (2016).
  37. Zhang Y, Jie W, Chen P, Liu W, Hao J, Adv. Mater. (2018).
  38. You H, Jia Y, Wu Z, Xu X, Qian Y, Ismail M, Electrochem. Commun., 79, 55 (2017)
  39. Scott JF, Science (80-.). 954 (2007).
  40. Blazquez-Castro A, Garcia-Cabanes A, Carrascosa M, Appl. Phys. Rev. (2018).
  41. Stock M, Dunn S, J. Phys. Chem. C, 116, 20854 (2012)
  42. Starr MB, Wang X, Nano Energy, 14, 296
  43. Starr MB, Wang X, Sci. Rep., 3 (2013)
  44. Kakekhani A, Ismail-Beigi S, Phys. Chem. Chem. Phys., 18, 19676 (2016)
  45. Kakekhani A, Ismail-Beigi S, J. Mater. Chem. A, 4, 5235 (2016)
  46. Shaik S, Mandal D, Ramanan R, Nat. Chem.2, 8, 1091 (2016)
  47. Beh ES, Basun SA, Feng X, Idehenre IU, Evans DR, Kanan MW, Chem. Sci., 8, 2790 (2017)
  48. Hughes MP, Nanoelectromechanics in engineering and biology (2002).
  49. Akhavan O, Ghaderi E, Sci. Technol. Adv. Mater., 10 (2009)
  50. Fried SD, Boxer SG, Annu. Rev. Biochem., 86, 387 (2017)
  51. Frontana-Uribe BA, Little RD, Ibanez JG, Palma A, Vasquez-Medrano R, Green Chem., 12, 2099 (2010)
  52. Tan G, Wang S, Zhu Y, Zhou L, Yu P, Wang X, He T, Chen J, Mao C, Ning C, ACS Appl. Mater. Interfaces, 8, 24306 (2016)
  53. Shi J, Starr MB, Xiang H, Hara Y, Anderson MA, Seo JH, Ma Z, Wang X, Nano Lett., 11, 5587 (2011)
  54. Li H, Yu Y, Starr MB, Li Z, Wang X, J. Phys. Chem. Lett., 6, 3410 (2015)
  55. Gorin CF, Beh ES, Kanan MW, J. Am. Chem. Soc., 134(1), 186 (2012)
  56. Gorin CF, Beh ES, Bui QM, Dick GR, Kanan MW, J. Am. Chem. Soc., 135, 11257 (2013)
  57. Shen NH, Smart Mater. Struct., 3, 439 (1994)
  58. Hwang WS, Park HC, AIAA J., 31, 930 (1993)
  59. Hong KS, Xu H, Konishi H, Li X, J. Phys. Chem. Lett., 1, 997 (2010)
  60. Zhao Y, Fan BZ, Feng W, Wang K, Huang X, Liu P, ChemCatChem, 10, 3397 (2018)
  61. Liang Z, Yan CF, Rtimi S, Bandara J, Appl. Catal. B: Environ., 241, 256 (2019)
  62. Wang M, Wang B, Huang F, Lin Z, Angew. Chem.-Int. Edit., 58, 7526 (2019)
  63. Phuong PTT, Zhang Y, Gathercole N, Khanbareh H, Duy NPH, Zhou X, Zhang D, Zhou K, Dunn S, Bowen C, IScience, 23 (2020)
  64. Sharma M, Vaish R, J. Am. Ceram. Soc., 104, 45 (2021)
  65. Sharma M, Halder A, Vaish R, Mater. Res. Bull., 122, 1 (2020)
  66. Liu QF, Ma JJ, Sharma M, Vaish R, J. Am. Ceram. Soc., 102(10), 5807 (2019)
  67. Hong KS, Xu H, Konishi H, Li X, J. Phys. Chem. C, 116, 13045 (2012)
  68. Tu S, Guo Y, Zhang Y, Hu C, Zhang T, Ma T, Huang H, Adv. Funct. Mater (2020).
  69. Li S, Zhao Z, Zhao J, Zhang Z, Li X, Zhang J, ACS Appl. Nano Mater., 1063 (2020).
  70. Lin H, Wu Z, Jia Y, Li W, Zheng RK, Luo H, Appl. Phys. Lett., 104 (2014)
  71. Lv W, Kong LJ, Lan SY, Feng JX, Xiong Y, Tian SH, J. Chem. Technol. Biotechnol., 92(1), 152 (2017)
  72. Wu MH, Lee JT, Chung YJ, Srinivaas M, Wu JM, Nano Energy, 40, 369 (2017)
  73. Feng Y, Ling L, Wang Y, Xu Z, Cao F, Li H, Bian Z, Nano Energy, 40, 481 (2017)
  74. Wu J, Xu Q, Lin E, Yuan B, Qin N, Thatikonda SK, Bao D, ACS Appl. Mater. Interfaces, 1, 17842 (2018)
  75. Ando M, Takeshima S, Ishiura Y, Ando K, Onishi O, Japanese Journal of Applied Physics, 56 (2017).
  76. Feng J, Fu Y, Liu X, Tian S, Lan S, Xiong Y, ACS Sustain. Chem. Eng., 6, 6032 (2018)
  77. Yao T, Chen J, Wang Z, Zhai J, Li Y, Xing J, Hu S, Tan G, Qi S, Cheng Y, Yu P, Ning C, Colloids Surf. B: Biointerfaces, 175, 463 (2019)
  78. Blazquez-Castro A, Stockert JC, Lopez-Arias B, Juarranz A, Agullo-Lopez F, Garcia-Cabanes A, Carrascosa M, Photochem. Photobiol. Sci., 10, 956 (2011)
  79. Kumar S, Vaish R, Powar S, J. Appl. Phys., 124, 014901 (2018)
  80. Tarek M, Biophys. J., 88, 4045 (2005)
  81. Pillet F, Formosa-Dague C, Baaziz H, Dague E, Rols MP, Sci. Rep., 6 (2016)
  82. Jain S, Sharma A, Basu B, Carbon N. Y, 81, 193 (2015)
  83. Khan SI, Blumrosen G, Vecchio D, Golberg A, McCormack MC, Yarmush ML, Hamblin MR, Austen WG, Biotechnol. Bioeng., 113(3), 643 (2016)
  84. Wang C, Yue L, Wang S, Pu Y, Zhang X, Hao X, Wang W, Chen S, J. Phys. Chem. C, 122, 26454 (2018)
  85. Marvan M, Fousek J, Phase Transitions, 79, 485 (2006)
  86. Zhang Y, Phuong PTT, Roake E, Khanbareh H, Wang Y, Dunn S, Bowen CC, Joule, 4, 301 (2020)
  87. Sharma M, Patel S, Singh VP, Vaish R, J. Appl. Phys., 128, 095108 (2020)
  88. Bowen CR, Taylor J, Leboulbar E, Zabek D, Chauhan A, Vaish R, Energy Environ. Sci., 7, 3836 (2014)
  89. Volk T, Wohlecke M, Springer Series in Materials Science, 115, 1 (2009).
  90. Gutmann E, Benke A, Gerth K, Bottcher H, Mehner E, Klein C, Krause-Buchholz U, Bergmann U, Pompe W, Meyer DC, J. Phys. Chem. C, 116, 5383 (2012)
  91. Petronella F, Truppi A, Ingrosso C, Placido T, Striccoli M, Curri ML, Agostiano A, Comparelli R, Catal. Today, 281, 85 (2017)
  92. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann JM, Appl. Catal. B: Environ., 31(2), 145 (2001)
  93. Tanaka K, Padermpole K, Hisanaga T, Water Res., 34, 327 (2000)
  94. Bhatkhande DS, Pangarkar VG, Beenackers AACM, J. Chem. Technol. Biotechnol, 102 (2002).
  95. Foster HA, Ditta IB, Varghese S, Steele A, Appl. Microbiol. Biotechnol, 1847 (2011).
  96. Rekha K, Nirmala M, Nair MG, Anukaliani A, Phys. B Condens. Matter, 405, 3180 (2010)
  97. Nozik AJ, Memming R, J. Phys. Chem., 100(31), 13061 (1996)
  98. Yang J, Wang D, Han H, Li C, Accounts Chem. Res., 46, 1900 (2013)
  99. Wang W, Huang X, Wu S, Zhou Y, Wang L, Shi H, Liang Y, Zou B, Appl. Catal. B: Environ., 134-135, 293 (2013)
  100. Li L, Salvador PA, Rohrer GS, Nanoscale, 6, 24 (2014)
  101. Singh G, Sharma M, Vaish R, Chem. Eng. J. (2020).
  102. Giocondi JL, Rohrer GS, J. Am. Ceram. Soc., 86(7), 1182 (2003)
  103. Huang HW, Tu SC, Du X, Zhang YH, J. Colloid Interface Sci., 509, 113 (2018)
  104. Liu X, Lv S, Fan B, Xing A, Jia B, Nanomaterials, 9 (2019)
  105. Li HP, Hu TX, Zhang RJ, Liu JQ, Hou WG, Appl. Catal. B: Environ., 188, 313 (2016)
  106. Wu Y, Wang H, Sun Y, Xiao T, Tu W, Yuan X, Zeng G, Li S, Chew JW, Appl. Catal. B: Environ., 227, 530 (2010)
  107. Cui Y, Briscoe J, Dunn S, Chem. Mater., 25, 4215 (2013)
  108. Chen F, Huang H, Guo L, Zhang Y, Ma T, Angew. Chemie, 13, 10164 (2019)
  109. Park S, Lee CW, Kang MG, Kim HJ, Kwon JE, ParK SY, Kang CY, Hong KS, Nam KT, Phys. Chem. Chem. Phys., 16, 10408 (2014)
  110. Kumar S, Sharma M, Powar S, Kabachkov EN, Vaish R, J. European Ceram. Soc., 3, 2915 (2019)
  111. Wang ZL, ACS Nano, 9533 (2013).
  112. Zhang Y, Yang Y, Gu Y, Yan X, Liao Q, Li P, Zhang Z, Wang Z, Nano Energy, 14, 30 (2014)
  113. Ma M, Zhang Z, Liao Q, Yi F, Han L, Zhan G, Liu S, Liao Z, Zhang Y, Nano Energy, 32, 389 (2017)
  114. Yi F, Wang X, Niu S, Li S, Yin Y, Dai K, Zhang G, Lin L, Wen Z, Guo H, Wang J, Yeh MH, Zi Y, Liao Q, You Z, Zhang Y, Wang ZL, Sci. Adv., 2 (2016)
  115. Misra V, Bozkurt A, Calhoun B, Jackson T, Jur J, Lach J, Lee B, Muth J, Oralkan O, Ozturk M, Trolier-Mckinstry S, Vashaee D, Wentzloff D, Zhu Y, Proc. IEEE, 103, 665 (2015)
  116. Lee TI, Jang WS, Lee E, Kim YS, Wang ZL, Baik HK, Myoung JM, Energy Environ. Sci., 7, 3994 (2014)
  117. Hu KS, Xiong R, Guo HY, Ma RL, Zhang SD, Wang ZL, Tsukruk VV, Adv. Mater., 28(18), 3549 (2016)
  118. Ma M, Zhang Z, Zhao Z, Liao Q, Kang Z, Gao F, Zhao X, Zhang Y, Nano Energy, 66 (2019)
  119. Kumar S, Sharma M, Kumar A, Powar S, Vaish R, J. Ind. Eng. Chem., 77, 355 (2019)
  120. Seil JT, Webster TJ, Nanotechnology, 23 (2012)
  121. Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O, World Allergy Organ. J., 9 (2012).
  122. Masimukku S, Hu YC, Lin ZH, Chan SW, Chou TM, Wu JM, Nano Energy, 46, 338 (2018)
  123. Xu J, Zang T, Du D, Kumar S, Sharma M, Vaish R, J. Am. Ceram. Soc. (2020).