화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.97, 280-286, May, 2021
Elucidation of durability of carbon-supported PdIr alloy catalyst by experimental and theoretical approaches in polymer electrolyte membrane fuel cell
E-mail:,
PdIr nanoparticles supported on carbon support are synthesized and their oxygen reduction reaction (ORR) activity and durability in a half cell or membrane-electrode assembly (MEA) configuration for polymer electrolyte membrane fuel cell are examined. A synergistic effect of the combination of Pd possessing the effective ORR catalytic activity and Ir as one of the most stable elements in acidic media leads to a decrease in particle size, a higher particle dispersion, and a better ORR activity than Pd monometallic catalysts. It is expected that PdIr alloys would form phase-separated nanoalloys that have Pd-rich surface owing to the higher surface energy of Ir. The addition of Ir to Pd in PdIr/C increases the metallic Pd portion. Meanwhile, the Pd5Ir/C is the most durable compared to Pd/C and Pt/C over 3000 h of MEA operation. The ORR activity of PdIr alloy is expected to increase by reducing the oxygen binding energy of Pd in the presence of Ir from the first-principle calculation, and each contribution of compressive strain and ligand effects is quantified. The cohesive energy and the kinetic segregation energy are also calculated to support the improved stability of PdIr compared to Pd and Pt in the ORR condition.
  1. Shakeel N, Ahmad A, Ahamed MI, Inamuddin, Asiri AM, Enzyme Microb. Technol., 127, 43 (2019)
  2. Inamuddin, Shakeel N, Ahamed MI, Kanchi S, Kashmery HA, Sci. Rep., 10, 5052 (2020)
  3. Inamuddin, Alamry KA, Materials, 13, 1823 (2020)
  4. Inamuddin, Kashmery HA, Int. J. Hydrog. Energy, 44(39), 22173 (2019)
  5. Antolini E, Energy Environ. Sci., 2, 915 (2009)
  6. Shao M, J. Power Sources, 196(5), 2433 (2011)
  7. Shao MH, Sasaki K, Adzic RR, J. Am. Chem. Soc., 128(11), 3526 (2006)
  8. Liu H, Manthiram A, Electrochem. Commun., 10, 740 (2008)
  9. You DJ, Park C, Jin SA, Lee KH, Kwon K, Choi KH, Heo PW, Jang H, Kim JY, Kim JM, J. Nanosci. Nanotechnol., 16, 4357 (2016)
  10. Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H, J. Phys. Chem. B, 108(46), 17886 (2004)
  11. Burke LD, Casey JK, J. Electrochem. Soc., 140, 1284 (1993)
  12. Gu ZH, Balbuena PB, J. Phys. Chem. A, 110(32), 9783 (2006)
  13. Antolini E, ACS Catal., 4, 1426 (2014)
  14. Wang R, Liao S, Fu Z, Ji S, Electrochem. Commun., 10, 523 (2008)
  15. You DJ, Jin SA, Lee KH, Pak C, Choi KH, Chang H, Catal. Today, 185(1), 138 (2012)
  16. Park SH, Choi CH, Koh JK, Park C, Jin SA, Woo SI, ACS Comb. Sci., 15, 572 (2013)
  17. Ham HC, Manogaran D, Lee KH, Kwon K, Jin SA, You DJ, Pak C, Hwang GS, J. Chem. Phys., 139, 201104 (2013)
  18. Meku E, Du C, Sun Y, Du L, Wang Y, Kong F, Yin G, RSC Adv., 6, 22754 (2016)
  19. Gavidia LMR, Garcia G, Anaya D, Querejeta A, Alcaide F, Pastor E, Appl. Catal. B: Environ., 184, 12 (2016)
  20. Yang T, Ma Y, Huang Q, Cao G, Nano Energy, 19, 257 (2016)
  21. Tzorbatzoglou F, Brouzgou A, Jing SY, Wang Y, Song SQ, Tsiakaras P, Int. J. Hydrog. Energy, 43(26), 11766 (2018)
  22. You DJ, Kim DH, Lile JRD, Li C, Lee SG, Kim JM, Pak C, Appl. Catal. A: Gen., 562, 250 (2018)
  23. Kwon K, Lee KH, Jin SA, You DJ, Park C, Electrochem. Commun., 13, 1067 (2011)
  24. Perdew JP, Burke K, Ernzerhof M, Phys. Rev. Lett., 77, 3865 (1996)
  25. Kresse G, VASP JF the Guide, Vienna University of Technology: Vienna, Austria, (2001).
  26. Blochl PE, Phys. Rev. B, 50, 17953 (1994)
  27. Blochl PE, Jepsen O, Andersen OK, Phys. Rev. B, 49, 16223 (1994)
  28. Henkelman G, Uberuaga BP, Jonsson H, J. Chem. Phys., 113(22), 9901 (2000)
  29. Kolb B, Muller S, Botts DB, Hart GLW, Phys. Rev. B, 74, 144206 (2006)
  30. Asanova TI, Asanov IP, Kim MG, Gerasimov EY, Zadesenets AV, Plyusnin PE, Korenev SV, J. Nanopart. Res., 15, 1994 (2013)
  31. Nguyen ATN, Shim JH, J. Electroanal. Chem., 827, 120 (2018)
  32. Bao J, Dou M, Liu H, Wang F, Liu J, Li Z, Ji J, ACS Appl. Mater. Interfaces, 7, 15223 (2015)
  33. Kim DH, Lee E, Pak C, Catal. Today, 359, 106 (2021)
  34. Yang T, Ma Y, Huang Q, Cao G, Wan S, Li N, Zhao H, Sun X, Yin F, Electrochem. Commun., 59, 95 (2015)
  35. You DJ, Kim DH, Kim JM, Pak C, Energies, 12, 4155 (2019)
  36. Kwon K, Park JO, Yoo DY, Yi JS, Electrochim. Acta, 54(26), 6570 (2009)
  37. Li Q, Jensen JO, Savinell RF, Bjerrum NJ, Prog. Polym. Sci, 34, 449 (2009)
  38. Oono Y, Sounai A, Hori M, J. Power Sources, 210, 366 (2012)
  39. Lee IH, Cho J, Chae KH, Cho MK, Jung J, Cho J, Lee HJ, Ham HC, Kim JY, Appl. Catal. B: Environ., 237, 318 (2018)
  40. Kim CE, Lim DH, Jang JH, Kim HJ, Yoon SP, Han J, Nam SW, Hong SW, Soon A, Ham HC, J. Chem. Phys., 142, 034707 (2015)
  41. Tao H, Liu S, Luo JL, Choi P, Liu Q, Xu Z, J. Mater. Chem. A, 6, 9650 (2018)
  42. Cho J, Jang I, Park HS, Choi SH, Jang JH, Kim HJ, Yoon SP, Yoo SJ, Ham HC, Appl. Catal. B: Environ., 235, 177 (2018)
  43. Wang YJ, Long W, Wang L, Yuan R, Ignaszak A, Fang B, Wilkinson DP, Energy Environ. Sci., 11, 258 (2018)