Journal of Industrial and Engineering Chemistry, Vol.97, 434-440, May, 2021
Continuous synthesis of stable ferrocene nanoparticles using a self-aligned coaxial turbulent jet mixer
E-mail:, ,
Ferrocene nanoparticles possess an outstanding characteristic as a drug delivery carrier, in being able to trigger on-demand release of drugs in a specific condition with reactive oxygen species (ROS). However, due to the limitation of the conventional bulk nanoprecipitation method, uniform and highly stable nanoparticles have still been difficult to develop. In this study, we developed device-mediated ferrocene nanoparticles (D-FNPs) with highly controlled uniform size and long-term stability through a flash nanoprecipitation method using a self-aligned coaxial turbulent jet mixer. The self-aligned coaxial turbulent jet mixer could be easily assembled using commercial tube fittings, which enabled the coaxial self-alignment of fluidic parts. In addition, by utilizing diaphragm pumps and pulsation dampers for the control of fluid flow, the coaxial turbulent jet mixer could be operated in a fully continuous manner. Thus, the D-FNPs could be prepared in a continuous manner with a high production rate of 633 mg/min. The DFNPs were highly stable in aqueous media for 3 months. In addition, after lyophilization without any cryoprotectants, the D-FNPs exhibited stable dispersion in aqueous solution. Importantly, the D-FNPs maintained their original outstanding ROS-responsive characteristics, while showing no cytotoxicity.
Keywords:Nanoparticles;Ferrocene;Nanoprecipitation;Turbulent jet;Reactive oxygen species;Long-term stability
- Le Thi P, Lee Y, Tran DL, Thi TTH, Kang JI, Park KM, Park KD, Acta Biomater., 103, 142 (2020)
- Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA, Nat. Rev. Immunol., 14, 181 (2014)
- Ye H, Zhou Y, Liu X, Chen YB, Duan SZ, Zhu RY, Liu Y, Yin LC, Biomacromolecules, 20(7), 2441 (2019)
- Yoshitomi T, Nagasaki Y, Adv. Healthc. Mater., 3, 1149 (2014)
- Zhu Y, Matsumura Y, Velayutham M, Foley LM, Hitchens TK, Wagner WR, Biomaterials, 177, 98 (2018)
- Kumar B, Priyadarshi R, Deeba F, Kulshreshtha A, Kumar A, Agrawal G, Gopinath P, Negi YS, Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 107, 110356 (2020)
- Li L, Yang WW, Xu DG, J. Drug Target., 27, 423 (2019)
- Casado N, Hernandez G, Sardon H, Mecerreyes D, Prog. Polym. Sci, 52, 107 (2016)
- Cirelli M, Hao J, Bor TC, Duvigneau J, Benson N, Akkerman R, Hempenius MA, Vancso GJ, ACS Appl. Mater. Interfaces, 11, 37060 (2019)
- Saleem M, Wang L, Yu H, Akram M, Ullah RS, Colloid Polym. Sci., 295, 995 (2017)
- Hu J, Zhuang W, Ma B, Su X, Yu T, Li G, Hu Y, Wang Y, Bioconj. Chem., 29, 1897 (2018)
- Hou W, Xia F, Alves CS, Qian X, Yang Y, Cui D, ACS Appl. Mater. Interfaces, 8, 1447 (2016)
- Na Y, Lee JS, Woo J, Ahn S, Lee E, Choi WI, Sung D, J. Mater. Chem. B, 8, 1906 (2020)
- Luo Y, Yin X, Yin X, Chen A, Zhao L, Zhang G, Liao W, Huang X, Li J, Zhang CY, Pharmaceutics, 11, 176 (2019)
- Wen L, Hu Y, Meng T, Tan Y, Zhao M, Dai S, Yuan H, Hu F, Colloids Surf. B: Biointerfaces, 175, 392 (2019)
- Xu X, Wu J, Liu S, Saw PE, Tao W, Li Y, Krygsman L, Yegnasubramanian S, De Marzo AM, Shi J, Small, 14, 180256 (2018)
- Fouda MF, Abd-Elzaher MM, Abdelsamaia RA, Labib AA, Appl. Organomet. Chem., 21, 613 (2007)
- Gasser G, Ott I, Metzler-Nolte N, J. Med. Chem., 54, 3 (2011)
- Qiu G, Liu X, Wang B, Gu H, Wang W, Polym. Chem., 10, 2527 (2019)
- Zuo C, Peng JL, Cong Y, Dai XY, Zhang XL, Zhao SJ, Zhang XS, Ma LW, Wang BY, Wei H, J. Colloid Interface Sci., 514, 122 (2018)
- Karnik R, Gu F, Basto P, Cannizzaro C, Dean L, Kyei-Manu W, Langer R, Farokhzad OC, Nano Lett., 8, 2906 (2008)
- Rhee M, Valencia PM, Rodriguez MI, Langer R, Farokhzad OC, Karnik R, Adv. Mater., 23, H78 (2011)
- Chen DL, Love KT, Chen Y, Eltoukhy AA, Kastrup C, Sahay G, Jeon A, Dong YZ, Whitehead KA, Anderson DG, J. Am. Chem. Soc., 134(16), 6948 (2012)
- Valencia PM, Pridgen EM, Rhee M, Langer R, Farokhzad OC, Karnik R, ACS Nano, 7, 10671 (2013)
- Lim JM, Bertrand N, Valencia PM, Rhee M, Langer R, Jon S, Farokhzad OC, Karnik R, Nanomed.: Nanotechnol. Biol. Med., 10, 401 (2014)
- Johnson BK, Prud’homme RK, Aust. J. Chem., 56, 1021 (2003)
- Zhu ZX, Anacker JL, Ji SX, Hoye TR, Macosko CW, Prud'homme RK, Langmuir, 23(21), 10499 (2007)
- Liu Y, Cheng C, Prud’homme RK, Fox RO, Chem. Eng. Sci., 63, 2829 (2008)
- Lim JM, Swami A, Gilson LM, Chopra S, Choi S, Wu J, Langer R, Karnik R, Farokhzad OC, ACS Nano, 8, 6056 (2014)
- Lim JM, Cai T, Mandaric S, Chopra S, Han H, Jang S, Choi WI, Langer R, Farokhzad OC, Karnik R, J. Colloid Interface Sci., 538, 45 (2019)
- Feng J, Markwalter CE, Tian C, Armstrong M, Prud’ homme RK, J. Transl. Med., 17, 1 (2019)
- Han H, Yoon JH, Yi GR, Choi WI, Lim JM, J. Ind. Eng. Chem.
- Pinder K, Can. J. Chem. Eng., 43, 274 (1965)
- Wang Y, Luo YL, Xu F, Chen YS, Tang W, J. Ind. Eng. Chem., 48, 66 (2017)
- Staff RH, Gallei M, Mazurowski M, Rehahn M, Berger R, Landfester K, Crespy D, ACS Nano, 6, 9042 (2012)
- Xu Y, Wang L, Li YK, Wang CQ, Carbohydr. Polym., 114, 27 (2014)
- Muraoka M, Gillett SL, Bell TW, Angew. Chem.-Int. Edit., 114, 3805 (2002)