- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.31, No.5, 245-254, May, 2021
Improving Mechanical Properties of Wire Arc Additively Manufactured Ti-6Al-4V Alloy by Ultrasonic Needle Peening Treatment
E-mail:,
Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.
Keywords:wire arc additive manufacturing;Ti-6Al-4V alloy;ultrasonic needle peening;microstructure;tensile test
- Peters M, Hemptenmacher J, Kumpfert J, Leyens C, Titanium and Titanium Alloys, Wiley-VCH, Weinheim, Germany (2003).
- Donachie MJ, Titanium: A Technical Guide, p. 1, 2nd ed., ASM International, (2000).
- Wu B, Pan Z, Ding DH, Cuiuri D, Li HJ, Xu J, Norrish J, J. Manuf. Process., 35, 127 (2018)
- Liu S, Shin YC, Mater. Des., 164, 107552 (2019)
- Donoghue J, Antonysamy AA, Martina F, Colegrove PA, Williams SW, Prangnell PB, Mater. Charact., 114, 103 (2016)
- Suprobo G, Ammar AA, Park N, Baek ER, Kim S, Met. Mater. Int., 25, 1428 (2019)
- Arias-Gonzalez F, Val JD, Comesana R, Penide J, et al., Met. Mater. Int., 24, 231 (2019)
- Byun YY, Lee S, Seo SM, Yeom J, Kim SE, Kang N, Hong J, Met. Mater. Int., 24, 1213 (2018)
- Al-Berman SS, Blackmore ML, Zhang W, Todd I, Metall. Mater. Trans. A, 41, 3422 (2010)
- Antonysamy AA, Meyer J, Prangnell P, Mater. Charact., 84, 153 (2013)
- Reginster S, Mertens A, Paydas H, Tchuindjang T, Contrepois Q, Dornal T, Lermaire O, Lecomte-Beker J, Mater. Sci. Forum, 765, 413 (2013)
- Colegrove PA, Donoghue J, Martina F, Gu J, Prangnell P, Honnige J, Scr. Mater., 135, 111 (2017)
- Martina F, Colegrove PA, Williams SW, Meyer J, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 46, 6103 (2015)
- Gu J, Ding J, Williams SW, Gu H, Ma P, Zhai Y, J. Mater. Process. Technol., 230, 26 (2016)
- Wang F, Williams S, Colegrove P, Antonysamy AA, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 44, 968 (2013)
- Bermingham MJ, McDonald SD, Nogita K, John DHS, Dargusch MS, Scr. Mater., 59, 538 (2008)
- Akerfeldt P, Antti ML, Pederson R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 674, 428 (2016)
- Wu B, Pan Z, Ding D, Cuiuri D, Li HJ, Fe Z, J. Mater. Process. Technol., 258, 97 (2018)
- Utama MI, Park N, Baek ER, Met. Mater. Int., 25, 439 (2019)
- Liu Z, Qi M, Qin X, Met. Mater. Int., 26, 1060 (2020)
- Lu P, Wu M, Liu X, Met. Mater. Int., 26, 1182 (2020)