화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.5, 245-254, May, 2021
Improving Mechanical Properties of Wire Arc Additively Manufactured Ti-6Al-4V Alloy by Ultrasonic Needle Peening Treatment
E-mail:,
Wire arc additive manufacturing (WAAM) is being considered as a technology to replace the conventional manufacturing process of titanium alloys. However, coarse β grains, which can extend through several deposited materials, result in strong textures and anisotropy. As a solution, we study the plastic deformation effects of ultrasonic needle peening (UNP) on the microstructure. UNP treated materials deform plastically and the dislocation density increases. Fine α+α' grains with low aspect ratio are observed in the UNP treated specimens. UNP treated WAAM Ti-6Al-4V alloys have higher strength and lower elongation than those characteristics of WAAM Ti-6Al-4V alloys. Due to UNP treatment, the z-axis directional specimens exhibit a greater effect of reducing elongation than do the x-axis directional specimens. The UNP treatment produces fine grains in proportion to the number of times UNP is performed, thereby increasing strength. UNP processes produce a large number of dislocations in the WAAM Ti-6Al-4V alloys, with the most dislocations being formed at the surface.
  1. Peters M, Hemptenmacher J, Kumpfert J, Leyens C, Titanium and Titanium Alloys, Wiley-VCH, Weinheim, Germany (2003).
  2. Donachie MJ, Titanium: A Technical Guide, p. 1, 2nd ed., ASM International, (2000).
  3. Wu B, Pan Z, Ding DH, Cuiuri D, Li HJ, Xu J, Norrish J, J. Manuf. Process., 35, 127 (2018)
  4. Liu S, Shin YC, Mater. Des., 164, 107552 (2019)
  5. Donoghue J, Antonysamy AA, Martina F, Colegrove PA, Williams SW, Prangnell PB, Mater. Charact., 114, 103 (2016)
  6. Suprobo G, Ammar AA, Park N, Baek ER, Kim S, Met. Mater. Int., 25, 1428 (2019)
  7. Arias-Gonzalez F, Val JD, Comesana R, Penide J, et al., Met. Mater. Int., 24, 231 (2019)
  8. Byun YY, Lee S, Seo SM, Yeom J, Kim SE, Kang N, Hong J, Met. Mater. Int., 24, 1213 (2018)
  9. Al-Berman SS, Blackmore ML, Zhang W, Todd I, Metall. Mater. Trans. A, 41, 3422 (2010)
  10. Antonysamy AA, Meyer J, Prangnell P, Mater. Charact., 84, 153 (2013)
  11. Reginster S, Mertens A, Paydas H, Tchuindjang T, Contrepois Q, Dornal T, Lermaire O, Lecomte-Beker J, Mater. Sci. Forum, 765, 413 (2013)
  12. Colegrove PA, Donoghue J, Martina F, Gu J, Prangnell P, Honnige J, Scr. Mater., 135, 111 (2017)
  13. Martina F, Colegrove PA, Williams SW, Meyer J, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 46, 6103 (2015)
  14. Gu J, Ding J, Williams SW, Gu H, Ma P, Zhai Y, J. Mater. Process. Technol., 230, 26 (2016)
  15. Wang F, Williams S, Colegrove P, Antonysamy AA, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 44, 968 (2013)
  16. Bermingham MJ, McDonald SD, Nogita K, John DHS, Dargusch MS, Scr. Mater., 59, 538 (2008)
  17. Akerfeldt P, Antti ML, Pederson R, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 674, 428 (2016)
  18. Wu B, Pan Z, Ding D, Cuiuri D, Li HJ, Fe Z, J. Mater. Process. Technol., 258, 97 (2018)
  19. Utama MI, Park N, Baek ER, Met. Mater. Int., 25, 439 (2019)
  20. Liu Z, Qi M, Qin X, Met. Mater. Int., 26, 1060 (2020)
  21. Lu P, Wu M, Liu X, Met. Mater. Int., 26, 1182 (2020)