화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.5, 272-277, May, 2021
산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가
Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte
E-mail:
Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.
  1. Mustapa MA, Yaakob OB, Ahmed YM, Rheem CK, Koh KK, Adnan FA, Renew. Sust. Energ. Rev., 77, 43 (2017)
  2. Subramani A, Badruzzaman M, Oppenheimer J, Jacangelo JG, Water Res., 45, 1907 (2011)
  3. Panwar NL, Kaushik SC, Kothari S, Renew. Sust. Energ. Rev., 15, 1513 (2011)
  4. Cho Y, Pak S, Lee YG, Hwang JS, Giraud P, An GH, Cha S, Adv. Funct. Mater., 30, 190847 (2020)
  5. An GH, Hong J, Pak S, Cho Y, Lee S, Hou B, Cha S, Adv. Eng. Mater., 10, 190298 (2020)
  6. Lee YG, An GH, ACS Appl. Mater. Interfaces, 12, 41342 (2020)
  7. An GH, Appl. Surf. Sci., 530, 147220 (2020)
  8. Sharma P, Bhatti TS, Energy Conv. Manag., 51(12), 2901 (2010)
  9. Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
  10. Park J, An GH, Appl. Surf. Sci., 549, 149326 (2021)
  11. Lee J, An GH, Appl. Surf. Sci., 539, 148290 (2021)
  12. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R, Nanoscale Adv., 1, 3807 (2019)
  13. Zhang L, Yang S, Chang J, Zhao D, Wang J, Yang C, Cao B, Front. Chem., 8, 413 (2020)
  14. Ye W, Wang H, Ning J, Zhong Y, Hu Y, J. Energy Chem., 57, 219 (2021)
  15. Qin W, Zhou N, Wu C, Xie M, Sun H, Guo Y, Pan L, ACS Omega, 5, 3801 (2020)
  16. Zang X, Shen C, Sanghadasa M, Lin L, ChemElectroChem, 6, 976 (2018)
  17. Blomquist N, Wells T, Andres B, Backstrom J, Forsberg S, Olin H, Sci. Rep., 7, 39836 (2017)
  18. An GH, Cha S, Ahn HJ, Appl. Surf. Sci., 478, 435 (2019)
  19. Arvani M, Keskinen J, Lupo D, Honkanen M, J. Energy Storage, 29, 101384 (2020)
  20. Liu L, Zhao H, Lei Y, Small Methods, 3, 180034 (2018)
  21. An GH, Ahn HJ, Appl. Surf. Sci., 473, 77 (2019)
  22. Lee BG, Shin SI, Ha MW, An GH, Curr. Appl. Phys., 20(3), 419 (2020)
  23. Hanappi MFYM, Deraman M, Suleman M, et al., Funct. Mater. Lett., 10, 175001 (2017)
  24. Ibukun O, Jeong HK, New Phys.: Sae Mulli, 69, 154 (2019)
  25. Zhang W, Liu D, Lin H, Lu H, Xu J, Liu D, Colloids Surf. A: Physicochem. Eng. Asp., 511, 294 (2016)
  26. Lee YG, Jang HN, Ah GH, Korean J. Mater. Res., 30(9), 458 (2020)
  27. Lee YG, Lee J, An GH, Chem. Eng. J., 414, 128916 (2021)
  28. An GH, Curr. Appl. Phys., 20(5), 605 (2020)
  29. Lee YG, An GH, Korean J. Mater. Res., 31(2), 68 (2021)
  30. An GH, Korean J. Mater. Res., 29(8), 505 (2019)
  31. Shin SI, Lee BG, Ha MW, An GH, Korean J. Mater. Res., 29(12), 774 (2019)