Korean Journal of Materials Research, Vol.31, No.5, 272-277, May, 2021
산성 전해질 기반의 전기 이중층 커패시터용 흑연 집전체의 전기화학적 안정성 평가
Evaluation of Electrochemical Stability of Graphite Current Collector for Electric Double Layer Capacitor Based on Acid Electrolyte
E-mail:
Owing to its low cost, easy fabrication process, and good ionic properties, aqueous supercapacitors are under strong consideration as next-generation energy storage devices. However, the limitation of the current collector is its poor electrochemical stability, leading to low energy storage performance. Therefore, a reasonable design of the current collector and the acidic electrolyte is a necessary, as well as interfacial engineering to enhance the electrochemical performance. In the present study, graphite foil, with excellent electrochemical stability and good electrical properties, is suggested as a current collector of aqueous supercapacitors. This strategy results in excellent electrochemical performance, including a high specific capacitance of 215 F g-1 at a current density of 0.1 A g-1, a superior high-rate performance (104 F g-1 at a current density of 20.0 A g-1), and a remarkable cycling stability of 98 % at a current density of 10.0 A g-1 after 9,000 cycles. The superior energy storage performance is mainly ascribed to the improved ionic diffusion ability during cycling.
- Mustapa MA, Yaakob OB, Ahmed YM, Rheem CK, Koh KK, Adnan FA, Renew. Sust. Energ. Rev., 77, 43 (2017)
- Subramani A, Badruzzaman M, Oppenheimer J, Jacangelo JG, Water Res., 45, 1907 (2011)
- Panwar NL, Kaushik SC, Kothari S, Renew. Sust. Energ. Rev., 15, 1513 (2011)
- Cho Y, Pak S, Lee YG, Hwang JS, Giraud P, An GH, Cha S, Adv. Funct. Mater., 30, 190847 (2020)
- An GH, Hong J, Pak S, Cho Y, Lee S, Hou B, Cha S, Adv. Eng. Mater., 10, 190298 (2020)
- Lee YG, An GH, ACS Appl. Mater. Interfaces, 12, 41342 (2020)
- An GH, Appl. Surf. Sci., 530, 147220 (2020)
- Sharma P, Bhatti TS, Energy Conv. Manag., 51(12), 2901 (2010)
- Zhang Y, Feng H, Wu XB, Wang LZ, Zhang AQ, Xia TC, Dong HC, Li XF, Zhang LS, Int. J. Hydrog. Energy, 34(11), 4889 (2009)
- Park J, An GH, Appl. Surf. Sci., 549, 149326 (2021)
- Lee J, An GH, Appl. Surf. Sci., 539, 148290 (2021)
- Pal B, Yang S, Ramesh S, Thangadurai V, Jose R, Nanoscale Adv., 1, 3807 (2019)
- Zhang L, Yang S, Chang J, Zhao D, Wang J, Yang C, Cao B, Front. Chem., 8, 413 (2020)
- Ye W, Wang H, Ning J, Zhong Y, Hu Y, J. Energy Chem., 57, 219 (2021)
- Qin W, Zhou N, Wu C, Xie M, Sun H, Guo Y, Pan L, ACS Omega, 5, 3801 (2020)
- Zang X, Shen C, Sanghadasa M, Lin L, ChemElectroChem, 6, 976 (2018)
- Blomquist N, Wells T, Andres B, Backstrom J, Forsberg S, Olin H, Sci. Rep., 7, 39836 (2017)
- An GH, Cha S, Ahn HJ, Appl. Surf. Sci., 478, 435 (2019)
- Arvani M, Keskinen J, Lupo D, Honkanen M, J. Energy Storage, 29, 101384 (2020)
- Liu L, Zhao H, Lei Y, Small Methods, 3, 180034 (2018)
- An GH, Ahn HJ, Appl. Surf. Sci., 473, 77 (2019)
- Lee BG, Shin SI, Ha MW, An GH, Curr. Appl. Phys., 20(3), 419 (2020)
- Hanappi MFYM, Deraman M, Suleman M, et al., Funct. Mater. Lett., 10, 175001 (2017)
- Ibukun O, Jeong HK, New Phys.: Sae Mulli, 69, 154 (2019)
- Zhang W, Liu D, Lin H, Lu H, Xu J, Liu D, Colloids Surf. A: Physicochem. Eng. Asp., 511, 294 (2016)
- Lee YG, Jang HN, Ah GH, Korean J. Mater. Res., 30(9), 458 (2020)
- Lee YG, Lee J, An GH, Chem. Eng. J., 414, 128916 (2021)
- An GH, Curr. Appl. Phys., 20(5), 605 (2020)
- Lee YG, An GH, Korean J. Mater. Res., 31(2), 68 (2021)
- An GH, Korean J. Mater. Res., 29(8), 505 (2019)
- Shin SI, Lee BG, Ha MW, An GH, Korean J. Mater. Res., 29(12), 774 (2019)