Applied Chemistry for Engineering, Vol.32, No.3, 237-242, June, 2021
복합대기오염 저감 시스템을 위한 오존 고속산화 기반 고도산화공정
An Ozone-based Advanced Oxidation Process for an Integrated Air Pollution Control System
E-mail:
초록
미세먼지와 함께 질소산화물, 황산화물, 휘발성 유기화합물, 암모니아 비롯한 유발물질에 대한 동시 저감기술은 엄격해지는 환경규제와 실질적인 저감효과 제고를 위해 꾸준히 주목받아 왔다. 오존산화에 의한 비수용성 질소산화물 고속산화 공정은 전통적으로 적용되고 있는 선택적 촉매환원 공정에 비해 공간절약형 시스템 적용을 가능하게 할 뿐만 아니라 운영비용 절감 측면에서 매우 효과적인 방법으로 평가되고 있으며 황산화물을 비롯한 산성가스와 동시 저감이 가능한 공정 구현이 가능하다는 장점까지 있다. 본 논문에서는 오존 고속산화 공정에 대한 기술 이슈 및 개발 동향을 소개하며 향후 산업적 이용 확대를 위한 개발 방향에 대해서 고찰하고자 한다.
Simultaneous removal technologies of multi-pollutants such as particulate matters (PMs), NOx, SOx, VOCs and ammonia have received consistent attention due to the enhancement of pollutant abatement efficiency in addition to the stringent environmental regulation and emission standard. Pretreatment of insoluble NO by an ozone oxidation can be considered to be more effective route for saving space occupation as well as operation cost in comparison with that of traditional selective catalytic reduction (SCR) process. Moreover the primary advantage of ozone oxidation process is that the simultaneous removal with acidic gas including SOx is also available. Herein, we highlight recent studies of multi-pollutant abatement via ozone oxidation process and the promising research topics for better application in industrial sectors.
Keywords:Air pollution control;Ozone oxidation;Wet electrostatic precipitation;NOx;Particulate matters
- Plautz J, Science, 361(6407), 1060 (2018)
- Zhao YB, Gao PP, Yang WD, Ni HG, Sci. Total Environ., 612, 490 (2018)
- Park HW, Uhm SH, Appl. Chem. Eng., 28(6), 607 (2017)
- Lin F, Wang Z, Zhang Z, He Y, Zhu Y, Shao J, Yuan D, Chen G, Cen K, Chem. Eng. J., 382, 123030 (2020)
- Cordoba P, Fuel, 144, 274 (2015)
- Yang SL, Pan XX, Han ZT, Zhao DS, Liu BJ, Zheng DK, Yan ZJ, Chem. Eng. J., 331, 8 (2018)
- Skalska K, Miller JS, Ledakowicz S, Sci. Total Environ., 408, 3976 (2010)
- Lei ZG, Wen CP, Chen BH, Environ. Sci. Technol., 45, 3437 (2011)
- Dao DQ, Gasnot L, Marschallek K, El Bakali A, Pauwels JF, Energy Fuels, 24, 1696 (2010)
- Zhang XY, Gao B, Creamer AE, Cao CC, Li YC, J. Hazard. Mater., 338, 102 (2017)
- Dai C, Zhou Y, Peng H, Huang S, Qin P, Zhang J, Yang Y, Luo L, Zhang X, J. Ind. Eng. Chem., 62, 106 (2018)
- Gao YS, Zhang Z, Wu JW, Duan LH, Umar A, Sun LY, Guo ZH, Wang Q, Environ. Sci. Technol., 47, 10813 (2013)
- Wu B, Tian H, Hao Y, Liu S, Liu X, Liu W, Bai X, Liang W, Lin S, Wu Y, Shao S, Liu H, Zhu C, Environ. Sci. Technol., 52, 14015 (2018)
- Stamate E, Irimiea C, Salewski M, Jpn. J. Appl. Phys., 52, 05EE03 (2013)
- Ji RJ, Wang J, Xu WQ, Liu XL, Zhu TY, Yan CY, Song JF, Ind. Eng. Chem. Res., 57(43), 14440 (2018)
- Han Z, Zou T, Wang J, Dong J, Deng Y, Pan X, J. Mater. Sci. Eng., 8, 943 (2020)
- Xu ZH, Xiao X, Jia Y, Fang P, Huang JH, Wu HW, Tang ZJ, Chen DY, ACS Omega, 5, 5844 (2020)
- Kang MS, Shin J, Yu TU, Hwang J, Chem. Eng. J., 381, 122601 (2020)
- Han ZT, Wang JM, Zou TY, Zhao DS, Gao C, Dong JM, Pan XX, Energy Fuels, 34(2), 2080 (2020)
- Fang P, Cen CP, Tang ZX, Zhong PY, Chen DS, Chen ZH, Chem. Eng. J., 168(1), 52 (2011)
- Chien TW, Chu H, J. Hazard. Mater., 80(1-3), 43 (2000)
- Kuropka J, Environ. Prot. Eng., 37, 13 (2011)
- https://csr.tsmc.com/csr/en/focus/greenManufacturing/airPollutionControl.html.
- Park HW, Cha WB, Uhm SH, Appl. Chem. Eng., 29(1), 10 (2018)
- Jodpinmai S, Boonduang S, Limsuwan P, J. Electrostat., 74, 108 (2015)