Applied Chemistry for Engineering, Vol.32, No.3, 277-282, June, 2021
소수성의 이미다졸리움 이온성 액체 합성과 이들의 물리화학적 특성 조사
Synthesis of Hydrophobic Imidazolium Ionic Liquids and Studies of Their Physiochemical Properties
E-mail:
초록
본 연구에서는 PF6를 음이온으로 하며, 이미다졸리움 계열의 양이온을 변화시키면서 2종의 소수성을 띠는 이온성 액체 전해질을 합성하였다. 합성한 이온성 액체는 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6와 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6이며 이들 각각의 구조는 푸에리에 변환 적외선 분광기와 핵자기공명 분광기를 이용하여 분석하였다. 이와 함께, 합성한 이온성 액체 전해질의 물리적(점도, 이온전도도, 열적 안정성)및 전기화학적 특성을 조사하고 비교 분석하였다. 그 결과, [BzBIM]PF6의 경우 [PBIM]PF6와 다르게 이미다졸리움 양이온에 π-π 분자 간 결합이 강하게 존재하는 벤질링 기능기를 가지고 있어서 열적 및 전기화학적 특성에서 더 우세한 안정성을 보여주었다.
Two hydrophobic imidazolium based ionic liquids including 1-benzyl-3-butylimidazolium hexafluorophosphate [BzBIM]PF6 and 1-pentyl-3-butylimidazolium hexafluorophosphate [PBIM]PF6 having the same anion and different cation parts were synthesized. The structural composition of these ionic liquids were confirmed with Fourier-transform infrared spectroscopy (FT-IR) and proton nuclear magnetic resonance (1H-NMR). Their physiochemical properties such as viscosity, ionic conductivity and thermal stability alongside electrochemical potential window range for both ionic liquid electrolytes were characterized and compared to each other. The overall results revealed that [BzBIM]PF6 has higher thermal and electrochemical stabilities and viscosity than that of [PBIM]PF6 probably due to the presence of benzyl ring in the imidazolium cation providing strong intermolecular π-π interactions.
Keywords:Ionic liquids;Hydrophobic electrolytes;1-Benzyl-3-butylimidazolium hexafluorophosphate;1-Pentyl-3-butylimidazolium hexafluorophosphate;Thermal stability;Potential window
- Andanson JM, Meng X, Traikia M, Husson P, J. Chem. Thermodyn., 94, 169 (2016)
- Plechkova NV, Seddon KR, Chem. Soc. Rev., 37, 123 (2008)
- O'Mahony AM, Silvester DS, Aldous L, Hardacre C, Compton RG, J. Chem. Eng. Data, 53(12), 2884 (2008)
- Salminen J, Papaiconomou N, Kumara RA, Lee JM, Kerr J, Newman J, Prausnitz JM, Fluid Phase Equilib., 261(1-2), 421 (2007)
- Papaiconomou N, Yakelis N, Salminen J, Bergman R, Prausnitz JM, J. Chem. Eng. Data, 51(4), 1389 (2006)
- Luo H, Dai S, Bonnesen PV, Anal. Chem., 76, 2773 (2004)
- Simonetti CD, De Francesco M, Bellusci M, Kim GT, Wu F, ChemSusChem, 12, 4946 (2019)
- Montanino M, Alessandrini F, Passerini S, Appetecchi GB, Electrochim. Acta, 96, 124 (2013)
- Li Z, Zhang X, Dong H, Zhang X, Gao H, Zhang S, Li J, Wang C, RSC Adv., 5, 81362 (2015)
- Li GH, Zhou Q, Zhang XP, LeiWang, Zhang SJ, Li JW, Fluid Phase Equilib., 297(1), 34 (2010)
- Sureshkumar M, Lee CK, J. Mol. Catal. B-Enzym., 60, 1 (2009)
- Sulaiman R, Adeyemi I, Abraham SR, Hasan SW, AlNashef IM, J. Mol. Liq., 294, 111680 (2019)
- Wang C, Tong Y, Huang Y, Zhang H, Yang Y, RSC Adv., 5, 63087 (2015)
- Nakagawa H, Izuchi S, Kuwana K, Nukuda T, Aihara Y, J. Electrochem. Soc., 150(6), A695 (2003)
- Zhu X, Du M, Feng J, Wang H, Xu Z, Wang L, Zuo S, et al., Angew. Chem.-Int. Edit., 60, 4238 (2021)
- Fukumoto K, Ohno H, Chem. Commun., 29, 3081 (2006)
- Bonhote P, Dias AP, Papageorgiou N, Kalyanasundaram K, Gratzel M, Inorg. Chem., 35(5), 1168 (1996)
- Papaiconomou N, Salminen J, Lee JM, Prausnitz JM, J. Chem. Eng. Data, 52(3), 833 (2007)
- Keskin S, Kayrak-Talay D, Akman U, Hortacsu O, J. Supercrit. Fluids, 43(1), 150 (2007)
- Hawker RR, Haines RS, Harper JB, Targets Heterocycl. Syst. Prop., 18, 141 (2015)
- Kermanioryani M, Mutalib MIA, Dong Y, Lethesh KC, Ben Ghanem OB, Kurnia KA, Aminuddin NF, Leveque JM, J. Chem. Eng. Data, 61(6), 2020 (2016)
- Hunt PA, J. Phys. Chem. B, 111(18), 4844 (2007)
- Han S, Luo M, Zhou XL, He Z, Xiong LP, Ind. Eng. Chem. Res., 51(15), 5433 (2012)
- Dharaskar SA, Wasewar KL, Varma MN, Shende DZ, Yoo C, Arab. J. Chem., 9, 578 (2016)
- Salman M, Lee HJ, Appl. Chem. Eng., 31(6), 603 (2020)
- Xue Z, Qin L, Jiang J, Mu T, Gao G, Phys. Chem. Chem. Phys., 20, 8382 (2018)
- Mahurin SM, Dai T, Yeary JS, Luo HM, Dai S, Ind. Eng. Chem. Res., 50(24), 14061 (2011)
- Ngo HL, LeCompte K, Hargens L, McEwen AB, Thermochim. Acta, 357, 97 (2000)
- Kosmulski M, Gustafsson J, Rosenholm JB, Thermochim. Acta, 412(1-2), 47 (2004)
- Comminges C, Barhdadi R, Laurent M, Troupel M, J. Chem. Eng. Data, 51(2), 680 (2006)
- Paduszynski K, Domanska U, J. Chem. Inf. Model., 54, 1311 (2014)
- Olivier-Bourbigou H, Magna L, J. Mol. Catal. A-Chem., 182(1), 419 (2002)
- Hardacre C, Holbrey JD, Katdare SP, Seddon KR, Green Chem., 4, 143 (2002)
- Jin H, O'Hare B, Dong J, Arzhantsev S, Baker GA, Wishart JF, Benesi AJ, Maroncelli M, J. Phys. Chem. B, 112(1), 81 (2008)
- Pitawala J, Matic A, Martinelli A, Jacobsson P, Koch V, Croce F, J. Phys. Chem. B, 113(31), 10607 (2009)
- Carda-Broch S, Berthod A, Armstrong DW, Anal. Bioanal. Chem., 375, 191 (2003)
- Matsumoto H. In Electrochemical Aspects of Ionic Liquid, pp 43-63, John Wiley & Sons, Inc. (2011).
- Putra RP, Horino H, Rzeznicka II, Catalysts, 10, 233 (2020)
- Li QB, Jiang JY, Li GF, Zhao WC, Zhao XH, Mu TC, Sci. China Chem., 59, 571 (2016)