화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 161-167, June, 2021
A theoretical study on screening ionic liquids for SO2 capture under low SO2 partial pressure and high temperature
E-mail:,
Most studies on SO2 capture using ionic liquids (ILs) have been carried out under mild conditions (e.g., about 1 bar of SO2 and 20-40 °C). However, these ILs only exhibit a fraction of their original SO2 uptake under harsher conditions, i.e., much lower SO2 partial pressure and evidently higher temperature (e.g., 0.2 mbar of SO2 and ≥110 °C). In this work, we screen 127 reported ILs for multi-molar SO2 absorption under the harsher conditions, covering nearly all the chemical space explored of the SO2 capturing IL. A unique cooperative anion-SO2 interaction mode with two forms (the insertion adduct and the ringed adduct) has been identified for branched anions, where SO2 acts as both acid and base to attack different reactive sites on anions. The simulated Langmuir isotherms further help screen out potential sorbents (amino-based branched singly charged anions with an Al atom as the center and carboxyl-based divalent anions) with both high overall capacity and high per-cycle absorption capacity. The energies of the reacting orbitals of the anions are linearly correlated to their SO2 binding energies. This work provides new insights for the design of task-specific ILs under harsh conditions.
  1. Ma XX, Kaneko T, Tashimo T, Yoshida T, Kato K, Chem. Eng. Sci., 55(20), 4643 (2000)
  2. Ortiz FJG, Vidal F, Ollero P, Salvador L, Cortes V, Gimenez A, Ind. Eng. Chem. Res., 45(4), 1466 (2006)
  3. Gao XA, Ding HL, Du Z, Wu ZL, Fang MX, Luo ZY, Cen KF, Appl. Energy, 87(8), 2647 (2010)
  4. Wu W, Han B, Gao H, Liu Z, Jiang T, Huang J, Angew. Chem.-Int. Edit., 43, 2415 (2004)
  5. Huang J, Riisager A, Wasserscheid P, Fehrmann R, Chem. Commun., 4027 (2006).
  6. Yuan XL, Zhang SJ, Lu XM, J. Chem. Eng. Data, 52(2), 596 (2007)
  7. Wang Y, Pan H, Li H, Wang C, J. Phys. Chem. B, 111(35), 10461 (2007)
  8. Lee KY, Gong GT, Son KH, Kim H, Jung KD, Kim CS, Int. J. Hydrog. Energy, 33(21), 6031 (2008)
  9. Wang Y, Wang C, Zhang L, Li H, Phys. Chem. Chem. Phys., 10, 5976 (2008)
  10. Ren SH, Hou YC, Wu WZ, Liu QY, Xiao YF, Chen XT, J. Phys. Chem. B, 114(6), 2175 (2010)
  11. Lee KY, Kim CS, Kim HG, Cheong MS, Mukherjee DK, Jung KD, Bull. Korean Chem. Soc., 31, 1937 (2010)
  12. Shiflett MB, Yokozeki A, Ind. Eng. Chem. Res., 49(3), 1370 (2010)
  13. Shiflett MB, Yokozeki A, Energy Fuels, 24, 1001 (2010)
  14. Ghobadi AF, Taghikhani V, Elliottt JR, J. Phys. Chem. B, 115(46), 13599 (2011)
  15. Hong SY, Im J, Palgunadi J, Lee SD, Lee JS, Kim HS, Cheong M, Jung KD, Energy Environ. Sci., 4, 1802 (2011)
  16. Shang Y, Li HP, Zhang SJ, Xu H, Wang ZX, Zhang L, Zhang JM, Chem. Eng. J., 175, 324 (2011)
  17. Wang CM, Cui GK, Luo XY, Xu YJ, Li HR, Dai S, J. Am. Chem. Soc., 133(31), 11916 (2011)
  18. Yu GR, Chen XC, J. Phys. Chem. B, 115(13), 3466 (2011)
  19. Cui G, Wang C, Zheng J, Guo Y, Luo X, Li H, Chem. Commun., 48, 2633 (2012)
  20. Yang ZZ, He LN, Song QW, Chen KH, Liu AH, Liu XM, Phys. Chem. Chem. Phys., 14, 15832 (2012)
  21. Berg RW, Harris P, Riisager A, Fehrmann R, J. Phys. Chem. A, 117, 11364 (2013)
  22. Cui G, Zheng J, Luo X, Lin W, Ding F, Li H, Wang C, Angew. Chem.-Int. Edit., 52, 10620 (2013)
  23. Huang K, Lu JF, Wu YT, Hu XB, Zhang ZB, Chem. Eng. J., 215-216, 36 (2013)
  24. Huang K, Wang GN, Dai Y, Wu YT, Hu XB, Zhang ZB, RSC Adv., 16264 (2013)
  25. Lee H, Jung YM, Lee KI, Kim HS, Park HS, RSC Adv., 3, 25944 (2013)
  26. Wang C, Zheng J, Cui G, Luo X, Guo Y, Li H, Chem. Commun., 49, 1166 (2013)
  27. Morganti JD, Hoher K, Ribeiro MCC, Ando RA, Siqueira LJA, J. Phys. Chem. C, 118, 22012 (2014)
  28. Cui G, Lin W, Ding F, Luo X, He X, Li H, Wang C, Green Chem., 16, 1211 (2014)
  29. Huang K, Zhang XM, Li YX, Wu YT, Hu XB, J. Membr. Sci., 471, 227 (2014)
  30. Mohammadi M, Foroutan M, J. Mol. Liq., 193, 60 (2014)
  31. Tian SD, Hou YC, Wu WZ, Ren SH, Qian JG, J. Hazard. Mater., 278, 409 (2014)
  32. Chen KH, Lin WJ, Yu XN, Luo XY, Ding F, He X, Li HR, Wang CM, AIChE J., 61(6), 2028 (2015)
  33. Cui G, Huang Y, Zhang R, Zhang F, Wang J, RSC Adv., 5, 60975 (2015)
  34. Cui G, Zhang F, Zhou X, Huang Y, Xuan X, Wang J, ACS Sustain. Chem. Eng., 3, 2264 (2015)
  35. Cui G, Zhang F, Zhou X, Li H, Wang J, Wang C, Chem. Eur. J., 21, 5632 (2015)
  36. Garcia G, Atilhan M, Aparicio S, Phys. Chem. Chem. Phys., 17, 13559 (2015)
  37. Lu XX, Yu J, Wu JZ, Guo YS, Xie HJ, Fang WJ, J. Phys. Chem. B, 119(25), 8054 (2015)
  38. Tang H, Lu D, ChemphysChem, 16, 2854 (2015)
  39. Sahoo DK, Mundlapati VR, Gagrai AA, Biswal HS, ChemistrySelect, 1, 1688 (2016)
  40. Huang K, Wu YT, Hu XB, Chem. Eng. J., 297, 265 (2016)
  41. Mondal A, Balasubramanian S, J. Phys. Chem. B, 120(19), 4457 (2016)
  42. Zhang F, Cui G, Zhao N, Huang Y, Zhao Y, Wang J, RSC Adv., 6, 86082 (2016)
  43. Zhang XM, Feng X, Li H, Peng J, Wu YT, Hu XB, Ind. Eng. Chem. Res., 55(41), 11012 (2016)
  44. Zhang Y, Lu D, Zhang JJ, Wu C, RSC Adv., 6, 66078 (2016)
  45. Zhao JH, Ren SH, Hou YC, Zhang K, Wu WZ, Ind. Eng. Chem. Res., 55(50), 12919 (2016)
  46. Meng XC, Wang JY, Jiang HC, Zhang XJ, Liu SL, Hu YQ, J. Chem. Technol. Biotechnol., 92(4), 767 (2017)
  47. Che S, Dao R, Zhang W, Lv X, Li H, Wang C, Chem. Commun., 53, 3862 (2017)
  48. Cui G, Zhao N, Li Y, Wang H, Zhao Y, Li Z, Wang J, ACS Sustain. Chem. Eng., 5, 7985 (2017)
  49. Cui G, Zhao N, Wang J, Wang C, Chem. Asian J., 12, 2863 (2017)
  50. Deng D, Jiang Y, Liu X, New J. Chem., 41, 2090 (2017)
  51. Garcia G, Atilhan M, Aparicio S, Phys. Chem. Chem. Phys., 19, 5411 (2017)
  52. Herrera C, de Carvalho Costa G, Atilhan M, Costa LT, Aparicio S, J. Mol. Liq., 225, 347 (2017)
  53. Meng XC, Wang JY, Xie PT, Jiang HC, Hu YQ, Chang T, Energy Fuels, 32(2), 1956 (2018)
  54. Li C, Lu D, Wu C, Phys. Chem. Chem. Phys., 20, 16704 (2018)
  55. Zhao T, Li Y, Zhang Y, Wu Y, Hu X, ACS Sustain. Chem. Eng., 6, 10886 (2018)
  56. Li C, Lu D, Wu C, Phys. Chem. Chem. Phys., 21, 18250 (2019)
  57. Yang D, Hou M, Ning H, Zhang J, Ma J, Yang G, Han B, Green Chem., 15, 2261 (2013)
  58. Deng D, Han G, Jiang Y, New J. Chem., 39, 8158 (2015)
  59. Zhang K, Ren SH, Hou YC, Wu WZ, J. Hazard. Mater., 324, 457 (2017)
  60. Zhang K, Ren SH, Yang X, Hou YC, Wu W, Bao YY, Chem. Eng. J., 327, 128 (2017)
  61. Zhang YY, Yuan S, Feng X, Li HW, Zhou JW, Wang B, J. Am. Chem. Soc., 138(18), 5785 (2016)
  62. Glomb S, Woschko D, Makhloufi G, Janiak C, ACS Appl. Mater. Inter., 9, 37419 (2017)
  63. Howe JD, Liu Y, Flores L, Dixon DA, Sholl DS, J. Chem. Theory Comput., 13, 1341 (2017)
  64. Rodriguez-Albelo LM, Lopez-Maya E, Hamad S, Ruiz-Salvador AR, Calero S, Navarro JA, Nat. Commun., 8, 14457 (2017)
  65. Ma S, Yuan D, Jiao Z, Wang T, Dai X, J. Phys. Chem. C, 121, 24077 (2017)
  66. Chen XP, Wang LM, Sun X, MEng RS, XIao J, Ye HY, Zhang GQ, IEEE Electr. Device Lett., 38, 661 (2017)
  67. Dong H, Wang L, Zhou L, Hou T, Li Y, Carbon, 113, 114 (2017)
  68. Mounfield WP, Han C, Pang SH, Tumuluri U, Jiao Y, Bhattacharyya S, Dutzer MR, Nair S, Wu Z, Lively RR, Sholl DS, Walton KS, J. Phys. Chem. C, 120, 27230 (2016)
  69. Li Z, Liao FY, Jiang F, Liu B, Ban S, Chen GJ, Sun CY, Xiao P, Sun YF, Fluid Phase Equilib., 427, 259 (2016)
  70. Tan K, Zuluaga S, Wang H, Canepa P, Soliman K, Cure J, Li J, Thonhauser T, Chabal YJ, Chem. Mater., 29, 4227 (2017)
  71. Hungerford J, Bhattacharyya S, Tumuluri U, Nair S, Wu Z, Walton KS, J. Phys. Chem. C, 122, 23493 (2018)
  72. Li J, Kang Y, Li BH, Wang X, Li D, Energy Fuels, 32(12), 12703 (2018)
  73. Ren SH, Hou YC, Tian SD, Chen XM, Wu WZ, J. Phys. Chem. B, 117(8), 2482 (2013)
  74. Huang K, Chen YL, Zhang XM, Xia S, Wu YT, Hu XB, Chem. Eng. J., 237, 478 (2014)
  75. Tian S, Hou Y, Wu W, Ren S, Qian J, Bull. Korean Chem. Soc., 35, 2791 (2014)
  76. Ren S, Hou Y, Zhang K, Wu W, Green Energy Environ., 3, 179 (2018)
  77. Zeng SJ, Gao HS, Zhang XC, Dong HF, Zhang XP, Zhang SJ, Chem. Eng. J., 251, 248 (2014)
  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, et al., Gaussian 09 (Revision B.01), Gaussian, Inc., Wallingford CT, 2009.
  79. Stewart JJP, J. Mol. Model., 13, 1173 (2007)
  80. Becke AD, J. Chem. Phys., 98, 5648 (1993)
  81. Hehre WJ, Radom L, Schleyer PVR, Pople JA, Ab Initio Molecular Orbital Theory, Wiley, New York, 1986.
  82. Deng DS, Liu XB, Gao B, Ind. Eng. Chem. Res., 56(46), 13850 (2017)
  83. Tantillo DJ, (2017) http://cheshirenmr.info.
  84. Hariharan PC, Pople JA, Theor. Chim. Acta, 28, 213 (1973)
  85. Ditchfield R, Mol. Phys., 27, 789 (1974)
  86. Krishnan R, Binkley JS, Seeger R, Pople JA, J. Chem. Phys., 72, 650 (1980)
  87. Peng C, Ayala PY, Schlegel HB, Frisch MJ, J. Comput. Chem., 17, 49 (1996)
  88. Gonzalez C, Schlegel HB, J. Chem. Phys., 90, 2154 (1989)
  89. Gonzalez C, Schlegel HB, J. Phys. Chem., 94, 5523 (1990)
  90. Glendening ED, Landis CR, Weinhold F, Wiley Interdiscip. Rev.: Comput. Mol. Sci., 2, 1 (2012).
  91. Glendening ED, et al., Theoretical Chemistry Institute, University of Wisconsin, Madison, 2013.
  92. Grotendorst J, John von Neumann Institute for Computing, Jurich, Germany, 2000.
  93. Schlegel HB, Millam JM, Iyengar SS, Voth GA, Daniels AD, Scuseria GE, Frisch MJ, J. Chem. Phys., 114(22), 9758 (2001)
  94. Iyengar SS, Schlegel HB, Millam JM, Voth GA, Scuseria GE, Frisch MJ, J. Chem. Phys., 115(22), 10291 (2001)
  95. Schlegel HB, Iyengar SS, Li XS, Millam JM, Voth GA, Scuseria GE, Frisch MJ, J. Chem. Phys., 117(19), 8694 (2002)
  96. Note: 1H-NMR, the peaks downfield stand for the transferred active H atoms.
  97. Lombardo L, Yang H, Zhao K, Dyson PJ, Zuttel A, ChemSusChem, 13, 2025 (2020)
  98. Li C, Lu D, Wu C, Sci. Rep., 8, 7284 (2018)