화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 375-382, June, 2021
Morphology controlled facile synthesis of MnO2 adsorbents for rapid strontium removal
E-mail:,
MnO2 nanostructures with three distinct architectures, namely flower, balk and tube-like, have been synthesized through a single step microwave assisted hydrothermal method at different reaction temperatures (110 °C, 140 °C and 180 °C). The characterization of as prepared MnO2 samples were performed by means of Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The N2 adsorption.desorption isotherms revealed the higher specific surface area and porosity of the flower like MnO2 as compared to balk and tube-like MnO2. The adsorption behavior of as prepared adsorbents was investigated towards Sr2+ radionuclide. Because of the hierarchal structure and the high surface area (62.64 m2/g), MnO2-110 depicted the best Sr2+ adsorption performance with maximum adsorption capacity of 52 mg/g at pH 6 as compared to other MnO2 morphologies synthesized at 140 °Cand 180 °C. The kinetic studies revealed that the adsorption of Sr2+ onto MnO2-110 followed the pseudo-first-order model whereas the adsorption equilibrium data obeyed the Freundlich and Sips model. Moreover, the MnO2-110 adsorbent reached the steady state quickly (~10 min) and is capable to bind Sr2+ in slightly acidic to alkaline solutions.
  1. Singh NB, Nagpal G, Agrawal S, Rachna, Environ. Technol. Innov., 11, 187 (2018)
  2. Eapen S, Thorat V, Kaushik C, Raj K, D’Souza S, Ecotoxicol. Environ. Saf., 69, 306 (2008)
  3. Osman KT, Management of soil problems, Springer, 2018.
  4. Hollriegl V, Louvat P, Werner E, Roth P, Schramel P, Wendler I, Felgenhauer N, Zilker T, Radiat. Environ. Biophys., 41, 281 (2002)
  5. Fang X, Xu Z, Luo Y, Ren L, Hua W, Procedia Environ. Sci., 31, 375 (2016)
  6. Chu ZC, Liu JS, Han CL, Chin. J. Chem. Eng., 23(10), 1620 (2015)
  7. Nishiyama Y, Hanafusa T, Yamashita J, Yamamoto Y, Ono T, J. Radioanal. Nucl. Chem., 307, 1279 (2016)
  8. Wu L, Cao J, Wu Z, Zhang J, Yang Z, J. Radioanal. Nucl. Chem., 314, 1973 (2017)
  9. Liu X, Lee DJ, Bioresour. Technol., 160, 24 (2014)
  10. Kerisit S, Liu C, Environ. Sci. Technol., 48, 3899 (2014)
  11. Chegrouche S, Mellah A, Barkat A, Desalination, 235(1-3), 306 (2009)
  12. Bascetin E, Atun G, Appl. Radiat. Isot., 64, 957 (2006)
  13. Ye X, Liu T, Li Q, Liu H, Wu Z, Colloids Surf. A: Physicochem. Eng. Asp., 330, 21 (2008)
  14. Garai M, Yavuz CT, Chemistry, 5, 750 (2019)
  15. Park B, Ghoreishian SM, Kim Y, Park BJ, Kang SM, Huh YS, Chemosphere, 263, 128266 (2021)
  16. Huo J, Yu G, Wang J, J. Hazard. Mater., 411, 125117 (2021)
  17. Shahzad A, Oh JM, Rasool K, Jang J, Kim B, Lee DS, J. Nucl. Mater., 152916 (2021).
  18. Chen CL, Hu J, Shao DD, Li JX, Wang XK, J. Hazard. Mater., 164(2-3), 923 (2009)
  19. Husnain SM, Um W, Woojin L, Chang YS, RSC Adv., 8, 2521 (2018)
  20. Husnain SM, Kim JH, Lee CS, Chang YY, Um W, Chang YS, RSC Adv., 6, 35825 (2016)
  21. Yagub MT, Sen TK, Afroze S, Ang HM, Adv. Colloid Interface Sci., 209, 172 (2014)
  22. Metwally SS, Ghaly M, El-Sherief EA, Mater. Chem. Phys., 193, 63 (2017)
  23. Dyer A, Pillinger M, Newton J, Harjula R, Moller T, Amin S, Chem. Mater., 12, 3798 (2000)
  24. Pittet PA, Bochud F, Froidevaux P, Anal. Chim. Acta, 1047, 267 (2019)
  25. Wu MH, Shi J, Deng HP, Arab. J. Chem., 11, 924 (2018)
  26. Guo Y, Guo H, Wang Y, Liu L, Chen W, RSC Adv., 4, 14048 (2014)
  27. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Krivosh-apkin PV, Krivoshapkina EF, Sillanpaa M, J. Radioanal. Nucl. Chem., 316, 673 (2018)
  28. Ivanets AI, Katsoshvili LL, Krivoshapkin PV, Prozorovich VG, Kuznetsova TF, Krivoshapkina EF, Radkevich AV, Zarubo AM, Radiochem., 59, 264 (2017)
  29. Ivanets AI, Prozorovich VG, Kouznetsova TF, Radkevich AV, Zarubo AM, Environ. Nanotechnol. Monit. Manag., 6, 261 (2016)
  30. Li Z, Ding Y, Xiong Y, Xie Y, Cryst. Growth Des., 5, 1953 (2005)
  31. Liu JB, Li KW, Wang H, Zhu MK, Yan H, Chem. Phys. Lett., 396(4-6), 429 (2004)
  32. Menendez JA, Domı’nguez A, Inguanzo M, Pis JJ, J. Anal. Appl. Pyrolysis, 71, 657 (2004)
  33. Tang W, Shan X, Li S, Liu H, Wu X, Chen Y, Mater. Lett., 132, 317 (2014)
  34. Nuchter M, Ondruschka B, Bonrath W, Gum A, Green Chem., 6, 128 (2004)
  35. Naik SD, Jagadale TC, Apte SK, Sonawane S, Kulkarni MV, Patil SI, Ogale SB, Kale BB, Chem. Phys. Lett., 452(4-6), 301 (2008)
  36. Yu P, Zhang X, Wang D, Wang L, Ma Y, Cryst. Growth Des., 9, 528 (2009)
  37. Wang X, Li Y, Chemistry, 9, 300 (2003)
  38. Li YL, Wang JJ, Zhang Y, Banis MN, Liu J, Geng DS, Li RY, Sun XL, J. Colloid Interface Sci., 369, 123 (2012)
  39. Ravichandran S, Karthikeyan E, Int. J. ChemTech Res., 3, 466 (2011)
  40. Meng LY, Wang B, Ma MG, Lin KL, Mater. Today Chem., 1, 63 (2016)
  41. Schmidt T, Prado-Gonjal J, Moran E, Microwaves: Microwave Assisted Hydrothermal Synthesis of Nanoparticles p. 561, (2015).
  42. Yang G, Park SJ, Materials, 12, 1177 (2019)
  43. Yang W, Zhang J, Ma Q,, Zhao Y, Liu Y, He H, Sci. Rep., 7, 4550 (2017)
  44. Zhang J, Li Y, Wang L, Zhang C, He H, Catal. Sci. Technol., 5, 2305 (2015)
  45. Ghosh D, Bhandari S, Khastgir D, Phys. Chem. Chem. Phys., 18, 32876 (2016)
  46. Chen H, Wang Y, Lv YK, RSC Adv., 6, 54032 (2016)
  47. Walanda DK, Lawrance GA, Donne SW, J. Power Sources, 139(1-2), 325 (2005)
  48. Karaseva ON, Ivanova LI, Lakshtanov LZ, Geohimia, 64, 1091 (2019)
  49. Tamura H, Oda T, Nagayama M, Furuichi R, J. Electrochem. Soc., 136, 2782 (1989)
  50. Ayawei N, Ebelegi AN, Wankasi D, J. Chem., 2017 (2017)
  51. Choi JW, Park YJ, Choi SJ, ACS Omega, 5, 8721 (2020)
  52. Ivanets A, Prozorovich V, Kouznetsova T, Radkevich A, Zarubo A, Environ. Nanotechnol. Monit. Manage., 6, 261 (2016)
  53. Adina N, Lupa L, Mihaela C, Negrea P, Int. J. Chem. Eng. Appl., 4, 326 (2013)
  54. Asadollahi N, Yavari R, Ghanadzadeh H, J. Radioanal. Nucl. Chem., 303, 2445 (2015)
  55. Hasan S, Iasir ARM, Ghosh TK, Sen Gupta B, Prelas MA, Healthcare, 7, 52 (2019)
  56. Inan S, Altas Y, Sep. Sci. Technol., 45(2), 269 (2010)
  57. Mironyuk I, Tatarchuk T, Naushad M, Vasylyeva H, Mykytyn I, J. Mol. Liq., 285, 742 (2019)
  58. Ghaeni N, Taleshi MS, Elmi F, Mar. Chem., 213, 33 (2019)
  59. Hong HJ, Kim BG, Hong J, Ryu J, Ryu T, Chung KS, Kim H, Park IS, Chem. Eng. J., 319, 163 (2017)
  60. Abbas N, Hussain M, Russo N, Saracco G, Chem. Eng. J., 175, 330 (2011)
  61. Devaraj S, Munichandraiah N, J. Phys. Chem. C, 112, 4406 (2008)