화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.98, 458-464, June, 2021
Effects of NaCl and temperature on rheological characteristics and structures of CTAB/NaSal wormlike micellar solutions
E-mail:
Sodium chloride (NaCl) is the most abundant salt in seawater, which showed the strongest effect in lowering the viscosity of wormlike micellar solutions (WMS) compared to other investigated ionic compounds. In this study, we examined the effect of NaCl addition on the structure of wormlike micelles using the semi-quantitative rheo-structure relations provided by the reaction-reptation model. Prior to addition of NaCl, the structure of wormlike micelles ([CTAB]/[NaSal] = 1 at [CTAB] = 100 mM) in the solution were investigated at different temperatures (25 ℃ < T < 60 ℃). At higher temperatures, shorter relaxation times and lower ratio values for the local minimum of loss modulus (G " min ) over the plateau modulus (G ' 0 ) were observed. Our results showed that while the zero-shear viscosity of WMS decreased by NaCl addition (S = [NaCl]/[CTAB] varied from 0 to 9), its first critical shear rate and shear stress plateau were observed at their higher values. In addition, while the relaxation time of WMS decreased by adding NaCl, values of G '' min=G ' 0 did not change accordingly. These results indicate that branch points were formed upon the addition of NaCl and led to the shorter relaxation time and lower zero-shear viscosity.
  1. Kumari R, et al., J. Dispersion Sci. Technol., 40(7), 969 (2019)
  2. Kumar S, et al., Abu Dhabi International Petroleum Exhibition & Conference, (2018) Society of Petroleum Engineers.
  3. Kang PS, Lim JS, Huh C, J. Ind. Eng. Chem., 78, 257 (2019)
  4. Jafari Nodoushan E, et al., Fluids, 4(3), 173 (2019)
  5. Zheng ZY, Li FC, Wang L, Li XB, Zhang HN, Cai WH, Zheng X, Int. J. Heat Mass Transf., 127, 1367 (2018)
  6. Jiang CX, Li FC, Adv. Mech. Eng., 6, 280643 (2014)
  7. King TE, et al., Offshore Technology Conference, (2019) Offshore Technology Conference.
  8. van Santvoort J, Golombok M, J. Pet. Explor. Prod. Technol., 6(3), 473 (2016)
  9. Almansour AO, et al., J. Pet. Explor. Prod. Technol., 7(4), 1149 (2017)
  10. Lin Z, Cai JJ, Scriven LE, Davis HT, J. Phys. Chem., 98(23), 5984 (1994)
  11. Rehage H, Hoffmann H, J. Phys. Chem., 92, 4712 (1988)
  12. Das NC, Cao H, Kaiser H, Warren GT, Gladden JR, Sokol PE, Langmuir, 28(33), 11962 (2012)
  13. Shikata T, Hirata H, Kotaka T, Langmuir, 3(6), 1081 (1987)
  14. Mendes E, Narayanan J, Oda R, Kern F, Candau SJ, Manohar C, J. Phys. Chem. B, 101(13), 2256 (1997)
  15. Krishnaswamy R, Ghosh SK, Lakshmanan S, Raghunathan VA, Sood AK, Langmuir, 21(23), 10439 (2005)
  16. Abezgauz L, Kuperkar K, Hassan PA, Ramon O, Bahadur P, Danino D, J. Colloid Interface Sci., 342(1), 83 (2010)
  17. Oelschlaeger C, Schopferer A, Scheffold F, Willenbacher N, Langmuir, 25(2), 716 (2009)
  18. Rogers SA, Calabrese MA, Wagner NJ, Curr. Opin. Colloid Interface Sci., 19(6), 530 (2014)
  19. Oelschlaeger C, Suwita P, Willenbacher N, Langmuir, 26(10), 7045 (2010)
  20. Hu YT, Matthys EF, J. Colloid Interface Sci., 186(2), 352 (1997)
  21. Xin X, et al., J. Pet. Sci. Eng., 114, 15 (2014)
  22. Zheng ZY, Li FC, Wang L, Li XB, Zhang HN, Cai WH, Zheng X, Rheol. Acta, 57(10), 619 (2018)
  23. Fardin MA, et al., Phys. Rev. Lett., 104(17), 178303 (2010)
  24. Ito TH, Miranda PCML, Morgon NH, Heerdt G, Dreiss CA, Sabadini E, Langmuir, 30(39), 11535 (2014)
  25. Cates M, Candau S, J. Phys. Condens. Matter, 2(33), 6869 (1990)
  26. Doi M, Edwards SF, The Theory of Polymer Dynamics, vol. 73, Oxford University Press, 1988.
  27. Zhao Y, Haward SJ, Shen AQ, J. Rheol., 59(5), 1229 (2015)
  28. Cates M, J. Phys. Chem., 94(1), 371 (1990)
  29. Cates M, Macromolecules, 20(9), 2289 (1987)
  30. de Gennes PG, J. Chem. Phys., 55(2), 572 (1971)
  31. Granek R, Cates M, J. Chem. Phys., 96, 4758 (1992)
  32. Vasudevan M, Shen A, Khomami B, Sureshkumar R, J. Rheol., 52(2), 527 (2008)
  33. Lam CN, et al., Phys. Chem. Chem. Phys., 21(33), 18346 (2019)
  34. Lutz-Bueno V, Effects of Formulation and Flow on the Structure of Micellar Aggregates, ETH Zurich, 2016.
  35. Hartmann V, Cressely R, Colloids Surf. A: Physicochem. Eng. Asp., 121(2-3), 151 (1997)
  36. Aswal V, Goyal P, Thiyagarajan P, J. Phys. Chem. B, 102(14), 2469 (1998)
  37. Kim WJ, Yang SM, J. Colloid Interface Sci., 232(2), 225 (2000)
  38. Culkin F, Cox R, Deep Sea Research and Oceanographic Abstracts, Elsevier, 1966.
  39. Turner M, Cates M, J. Phys. II, 2(3), 503 (1992)
  40. Kuryashov D, et al., Colloid J, 72(2), 230 (2010)
  41. Fischer P, Rehage H, Langmuir, 13(26), 7012 (1997)
  42. Shrestha RG, Shrestha LK, Aramaki K, J. Colloid Interface Sci., 322(2), 596 (2008)
  43. Manneville S, Rheol. Acta, 47(3), 301 (2008)
  44. Spenley N, Cates M, McLeish T, Phys. Rev. Lett., 71(6), 939 (1993)
  45. Berret JF, Molecular Gels, Springer, p.667, 2006.
  46. Fischer E, Callaghan PT, Phys. Rev. E, 64(1), 011501 (2001)
  47. Lequeux F, EPL Europhys. Lett., 19(8), 675 (1992)
  48. Truong MT, Walker LM, Langmuir, 18(6), 2024 (2002)
  49. Grand C, Arrault J, Cates M, J. Phys. II, 7(8), 1071 (1997)
  50. Amin S, Kermis TW, van Zanten RM, Dees SJ, van Zanten JH, Langmuir, 17(26), 8055 (2001)
  51. Fabre H, et al., J. Phys. Chem., 84(25), 3428 (1980)