화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.7, 1460-1468, July, 2021
A thixotropic fluid flow around two sequentially aligned spheres
E-mail:
We studied the thixotropic-hydrodynamic interaction of particles resulting from a combination of external flow conditions and intrinsic thixotropy of a fluid. As a model system, a low Reynolds number Moore thixotropic fluid flow around two sequentially aligned sphere was simulated using the standard Galerkin finite element method. The drag coefficients of each sphere were used to quantitively characterize the thixotropic-hydrodynamic interaction between the two spheres. First, hydrodynamic interaction change according to the external flow condition was identified at a fixed distance. Subsequently, the parametric analysis was extended to incorporate the effect of the geometrical condition, the sphere-sphere distance parameter. This yields a conceptual map that distinguishes the thixotropic-hydrodynamic interaction into three different types: the geometric hydrodynamic interaction, combination of geometric and local thixotropic interaction, and global thixotropic-hydrodynamic interaction.
  1. Mewis J, Wagner NJ, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).J. Mewis and N. J. Wagner, Colloidal suspension rheology, Cambridge University Press, Cambridge (2011).
  2. Goodeve CF, Trans. Faraday Soc., 35, 342 (1939)
  3. Moore F, Trans. J. Br. Ceram. Soc., 58, 470 (1959)
  4. Stickel JJ, Phillips RJ, Powell RL, J. Rheol., 50(4), 379 (2006)
  5. Goddard JD, J. Non-Newton. Fluid Mech., 14, 141 (1984)
  6. Patel PD, Russel WB, Colloids Surf., 31, 355 (1988)
  7. Potanin AA, J. Colloid Interface Sci., 145, 140 (1991)
  8. Barnes HA, J. Non-Newton. Fluid Mech., 70(1-2), 1 (1997)
  9. Lopez-Aguilar JE, Webster MF, Tamaddon-Jahromi HR, Manero O, Rheol. Acta, 55(3), 197 (2016)
  10. Derksen JJ, Appl. Math. Model., 35, 1656 (2011)
  11. Kim J, Park JD, Appl. Math. Model., 82, 848 (2020)
  12. Lopez-Aguilar JE, Webster MF, Tamaddon-Jahoromi HR, Manero O, Rheol. Acta, 54, 307 (2014)
  13. Ouyang L, Wu Z, Wang J, Qi X, Li Q, Wang J, Lu S, RSC Adv., 10, 19360 (2020)
  14. Shikinaka K, Taki N, Kaneda K, Tominaga Y, Chem. Comm., 53, 613 (2016)
  15. Balhoff MT, Thompson KE, Chem. Eng. Sci., 61(2), 698 (2006)
  16. Balhoff MT, Thompson KE, AIChE J., 50(12), 3034 (2004)
  17. Kim KH, Chang HN, Biotechnol. Bioeng., 28, 452 (1986)
  18. Engmann J, Burbidge AS, Food Fucnt., 4, 443 (2013)
  19. Quemada D, Droz R, Biorhelogy, 20, 635 (1983)
  20. de Kretser RG, Boger DV, Rheol. Acta, 40(6), 582 (2001)
  21. Zanna N, Tomasini C, Gels, 3, 39 (2017)
  22. Mortazavi-Manesh S, Shaw JM, Energy Fuels, 28(2), 972 (2014)
  23. Happel J, Brenner H, Low Reynolds number hydrodynamics, Prentice-Hall, London (1965).
  24. Stimson M, Jeffrey GB, Proc. R. Soc. Lond. Series A, 111, 110 (1926)
  25. Arndt D, Bangerth W, Davydov D, Heister T, Heltai L, Kronbichler M, Maier M, Pelteret JP, Turcksin B, Wells D, J. Numer. Math., 25, 137 (2017)
  26. Taylor C, Hood P, Comput. Fluids, 1, 73 (1973)
  27. Brooks AN, Hughes TJR, Comput. Methods in Appl. Mech. Eng., 32, 199 (1982)
  28. Geuzaine C, Remacle JF, Int. J. Numer. Eng., 79, 1309 (2009)
  29. Saad Y, Schultz MH, SIAM J. Sci. and Stat. Comp., 7, 856 (1986)