Macromolecular Research, Vol.29, No.6, 423-429, June, 2021
Fabrication of Paper-Based Microfluidic Devices Using PECVD for Selective Separation
E-mail:
The interest in microfluidic devices is increasing day by day due to consuming much lower amount of chemicals. Paper-based microfluid device is one of the most important types of microfluidic device, due to the inherent superior properties of papers. This study set out to develop a novel approach to fabricate a pHresponsive paper-based microfluidic device using plasma enhanced chemical vapor deposition (PECVD). Magnets were used for masking the paper surface. Poly(2- dimethylaminoethyl methacrylate) (PDMAEMA) thin film having ionizable groups was coated on the inner surfaces of the microfluidic channel. Hydrophobic poly (2,2,3,4,4,4-hexafluoro butyl acrylate) (PHFBA) thin film was used to produce the barrier of the microchannel. A standard chromatography paper was successfully transformed into pH-responsive paper-based microfluidic device. Due to its inherent vapor-based nature, PECVD method provided excellent conformal coverage on the paper surface without disrupting the surface structures. The selective separation ability of the microfluidic device was tested at different pH values using anionic and cationic analytes. The microfluidic device demonstrated selective separation ability of analytes depending on the pH value of the medium. The obtained results showed that the differences between the retentions of both analytes on the microfluidic device at different pH values are much more than those of the uncoated papers under the same conditions.
- Whitesides GM, Nature, 442, 368 (2006)
- Konno N, Suzuki R, Takagi T, Sugimoto M, Asama H, Sato Y, Irie H, Hikichi T, Ohira H, J. Hepato.Biliary.Pancreatic Sci., 28, 115 (2020)
- Kline ND, Tripathi A, Mirsafavi R, Pardoe I, Moskovits M, Meinhart C, Guicheteau JA, Christesen SD, Fountain AW, Anal. Chem., 88, 10513 (2016)
- Kanitthamniyom P, Zhang Y, Microfluid. Nanofluid., 22, 24 (2018)
- Tuccitto N, Microfluid. Nanofluid., 20, 129 (2016)
- Thongkam T, Hemavibool K, Microch. J., 159, 105412 (2020)
- Duangdeewong C, Sitanurak J, Wilairat P, Nacapricha D, Teerasong S, Microch. J., 152, 104447 (2020)
- Damiati S, Macromol. Res., 28(11), 1046 (2020)
- Ahn GY, Choi IS, Song MJ, Han SK, Choi KH, Choi SW, Macromol. Res., 29(1), 82 (2021)
- Gale BK, Jafek AR, Lambert CJ, Goenner BL, Moghimifam H, Nze UC, Kamarapu SK, Inventions, 3, 60 (2018)
- Majeed B, et al., 2014 IEEE 64th Electronic Components and Technology Conference (ECTC), IEEE2014, Orlando, pp165, 2014.
- Gundabala V, Martinez-Escobar S, Marquez S, Marquez M, Fernandez-Nieves A, J. Phys. D-Appl. Phys., 46, 114006 (2013)
- Lee KG, Lee TJ, Jeong SW, Choi HW, Heo NS, Park JY, Park TJ, Lee SJ, Sensors, 12, 10810 (2012)
- Jang H, Noh H, Macromol. Res., 23(5), 493 (2015)
- Yu L, Shi ZZ, Lab Chip, 15, 1642 (2015)
- Postulka N, Striegel A, Krauße M, Mager D, Spiehl D, Meckel T, Worgull M, Biesalski M, ACS Appl. Mater. Interfaces, 11, 4578 (2019)
- Bruzewicz DA, Reches M, Whitesides GM, Anal. Chem., 80, 3387 (2008)
- Yamada K, Henares TG, Suzuki K, Citterio D, Angew. Chem.-Int. Edit., 54, 5294 (2015)
- Cheng C, Gupta M, Ind. Eng. Chem. Res., 57(34), 11675 (2018)
- Citak E, Istanbullu B, Sakalak H, Gursoy M, Karaman M, Macromol. Chem. Phys., 220, 190027 (2019)
- Jeong GM, Seong H, Kim YS, Im SG, Jeong KJ, Polym. Chem., 5, 4459 (2014)
- Li L, Roethel S, Breedveld V, Hess DW, Cellulose, 20, 3219 (2013)
- Kao PK, Hsu CC, Microfluid. Nanofluid., 16, 811 (2014)
- Kwong P, Gupta M, Anal. Chem., 84, 10129 (2012)
- Gursoy M, Plasma Chem. Plasma Process., 1 (2020).
- Sakalak H, Yilmaz K, Gursoy M, Karaman M, Chem. Eng. Sci., 215, 115466 (2020)
- Yasuda H, Hirotsu T, J. Polym. Sci., Polym. Chem. Ed., 16, 743 (1978).
- Pena-Francesch A, Montero L, Borros S, Langmuir, 30, 7162 (2014)
- Yilmaz K, Sakalak H, Gursoy M, Karaman M, J. Appl. Polym. Sci., 138, 50119 (2021)
- Tourrette A, Geyter ND, Jocic D, Morent R, Warmoeskerken MMCG, Leys C, Colloids Surf. A: Physicochem. Eng. Asp., 352, 126 (2009)
- Gursoy M, Ucar T, Tosun Z, Karaman M, Plasma Process. Polym., 13, 438 (2016)
- Lin-Vien D, et al., The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules, Academic Press, San Diego, pp.73, 1991.
- Angelini A, Fodor C, Yave W, Leva L, Car A, Meier W, ACS Omega, 3, 18950 (2018)
- Okten NS, Canakci CC, Orakdogen N, Eur. Polym. J., 114, 176 (2019)
- Karaman M, Gursoy M, Aykul F, Tosun Z, Kars MD, Yildiz HB, Plasma Sci. Technol., 19, 085503 (2017)
- Teare DOH, Spanos CG, Ridley P, Kinmond EJ, Roucoules V, Badyal JPS, Brewer SA, Coulson S, Willis C, Chem. Mater., 14, 4566 (2002)
- Vasudev MC, Anderson KD, Bunning TJ, Tsukruk VV, Naik RR, ACS Appl. Mater. Interfaces, 5, 3983 (2013)
- Gursoy M, J. Appl. Polym. Sci., 138, 49722 (2021)
- Gursoy M, Karaman M, Prog. Org. Coat., 120, 190 (2018)
- d'Agostino R, et al., Plasma Deposition, Treatment, and Etching of Polymers, Academic Press, Inc., San Diego, Chap. 2, p 95, 1990.
- Karaman M, Surface Treatments for Biological, Chemical, and Physical Applications, John Wiley and Sons, p.23, 2017.
- Gursoy M, Karaman M, Chem. Eng. J., 284, 343 (2016)
- Yasuda H, Hsu T, J. Polym. Sci., Polym. Chem. Ed., 15, 2411 (1977).
- Yasuda H, J. Macromol. Sci.-Chem., 10, 383 (1976)
- Xu YY, Bolisetty S, Drechsler M, Fang B, Yuan JY, Ballauff M, Muller AHE, Polymer, 49(18), 3957 (2008)
- Butun V, Armes SP, Billingham NC, Polymer, 42(14), 5993 (2001)
- van de Wetering P, Moret EE, Schuurmans-Nieuwenbroek NM, van Steenbergen MJ, Hennink WE, Bioconjug. Chem., 10, 589 (1999)
- Gursoy M, Harris MT, Downing JO, Barrientos-Palomo SN, Carletto A, Yaprak AE, Karaman M, Badyal JPS, Colloids Surf. A: Physicochem. Eng. Asp., 529, 195 (2017)
- Soto D, Ugur A, Farnham TA, Gleason KK, Varanasi KK, Adv. Funct. Mater., 28, 170735 (2018)
- Simsek B, Karaman M, J. Coat. Technol. Res., 17, 381 (2020)
- Kovacik P, Del Hierro G, Livernois W, Gleason KK, Mater. Horizons, 2, 221 (2015)
- Saric S, Schofield R, Proc. R. Soc. Lond. A: Math. Phys. Sci., 185, 431 (1946)