Clean Technology, Vol.27, No.2, 124-131, June, 2021
나노셀룰로오스-LDPE 복합체의 제조에 있어서 상용성에 대한 연구
A Study on the Compatibility of Nanocellulose-LDPE Composite
E-mail:
초록
국제정치와 세계경제의 이슈가 되고 있는 ‘탄소중립’에 대한 선언이 전 세계적으로 이어지면서, 석유 기반 고분자를 생분해가 가능한 천연고분자로의 대체 연구가 활발히 진행되고 있다. 본 연구에서는 천연고분자 중에서도 세계에서 가장 많은 양을 차지하고 있는 나노셀룰로오스를 대체재로 제안하였다. 실란커플링제인 Glycidoxypropyl Trimethoxysilane (GPTMS)를 이용한 결정형 나노셀룰로오스의 표면작용기개질반응으로 하이브리드 나노셀룰로오스(hybrid nanocellulose, HNC)를 제조하였고, 저밀도폴리에틸렌(low density polyethylene, LDPE)과 함께 필름을 형성하였다. 친수성인 결정형나노셀룰로오스의 표면작용기개질반응을 확인하기 위해 소수성으로 바뀌는 것을 푸리에 변환 적외선 분광분석(fourier transform infrared spectrophotometer, FT-IR)과 친수/친유화도를 측정하였으며, 하이브리드 나노셀룰로오스를 적용한 고분자 복합체의 물성 확인을 위해 친수/친유화도, 인장강도, 투명도를 확인하였다. 석유기반 고분자와의 상용성은 pH 14에서 반응한 HNC가 LDPE 대비 1 wt%일 때, 인장강도와 투명도가 가장 우수하며, 결과적으로 실란커플링제를 이용한 나노셀룰로오스의 표면작용기 개질이 가능하고 석유 기반 고분자와의 높은 상용성으로 인해 탄소중립을 위한 화석연료의 사용량을 줄일 수 있을 것으로 기대된다.
As declarations of carbon neutrality are spreading throughout the world, much research is being conducted on biodegradable polymers. In this study, nanocellulose, which comprises the largest amount of natural polymer currently available in the world, was proposed as a substitute for non-biodegradable polymers. We chose to modify the surface functional group of crystalline nanocellulose using glycidoxypropyl trimethoxysilane (GPTMS), which is a silane coupling agent, and the product was then used to form a film with low density polyethylene (LDPE). We then conducted measurements using a Fourier transform infrared spectrophotometer (FT-IR) in addition to measuring hydrophilic/lipophilicity of the surface functional group modification of crystalline nitrocellulose as well as that of a polymer composite using the hybrid nanocellulose (H-NC). For compatibility with petroleum-based polymers, the best tensile strength and transparency was found when the H-NC was reacted at pH 14 and 1 wt% compared with LDPE. From the test results, we found that it is possible to modify the surface functional groups of nanocellulose using a silane coupling agent. In addition, the high compatibility of nanocellulose with petroleum-based polymers is expected to help in reaching carbon neutrality by reducing the use of fossil fuels.
- Olah GA, Goeppert A, Prakash GAK, J. Org. Chem., 74(2), 487 (2009)
- Ching YC, Rahman A, Ching KY, Sukiman NL, Cheng HC, BioRes., 10(10), 3364 (2015)
- Li W, Wu Q, Zhao X, Huang Z, Cao J, Li J, Liu S, Carbohydr. Polym., 113, 403 (2014)
- Field CB, Campbell JE, Lobell DB, Trends Ecol. Evol., 23(2), 65 (2008)
- Ching YC, Ng TS, BioRes., 9(4), 6373 (2014)
- Cho MJ, Park BD, J. Ind. Eng. Chem., 17(1), 36 (2011)
- Choo K, Ching YC, Chuah CH, Julai S, Liou NS, Materials, 9(8), 644 (2016)
- Sirvio JA, Honkaniemi S, Visanko M, Liimatainen H, ACS Appl. Mater. Interfaces, 7(35), 19691 (2015)
- Moon RJ, Martini A, Nairn J, Youngblood J, Chem. Soc. Rev., 40(7), 3941 (2011)
- Nogi M, Iwamoto S, Nakagaito AN, Yano H, Adv. Mater., 21(16), 1595 (2009)
- Roohani M, Habibi Y, Belgacem NM, Ebrahim G, Karimi AN, Dufresne A, Eur. Polym. J., 44(8), 2489 (2008)
- Khalil HPSA, Davoudpour Y, Islam MN, Mustapha A, Sudech K, Dungani R, Jawaid M, Carbohydr. Polym., 99, 649 (2014)
- Habibi Y, Lucia LA, Rojas OJ, Chem. Rev., 110(6), 3479 (2010)
- Stevanic JS, Joly C, Mikkonen KS, Pirkkalainen K, Serimaa R, Remond C, Toriz G, Gatenholm P, Tenkanen M, Salmen L, J. Appl. Polym. Sci., 122(2), 1030 (2011)
- Missoum K, Belgacern MN, Bras J, Materials, 6(5), 1745 (2013)
- Oksman K, Aitomaki Y, Mathew AP, Siqueira G, Zhou Q, et al.,, Composites, Part A, 83, 2 (2016)
- John MJ, Thomas S, Carbohydr. Polym., 71(3), 343 (2008)
- Saito T, Hirota M, Tamura N, Kimura S, Fukuzumi H, Heux L, Isogai A, Biomacromolecules, 10(7), 1992 (2009)
- Abraham E, Deepa B, Pothan LA, Jacob M, Thomas S, Cvelbar U, Anandjiwala R, Carbohydr. Polym., 86(4), 1468 (2011)
- Ashori A, Sheykhnazari S, Tabarsa T, Shakeri A, Golalipour M, Carbohydr. Polym., 90(1), 413 (2012)
- Latthe SS, Imai H, Ganesan V, Kappenstein C, Rao A, J. Sol-Gel Sci. Technol., 53(2), 208 (2010)
- Naghsh M, Sadeghi M, Moheb A, Chenar MP, Mohagheghian M, J. Membr. Sci., 423, 97 (2012)
- Raabe J, de Souza Fonseca A, Bufalino L, Ribeiro C, Martins MA, Marconcini JM, Tonoli GHD, Carbohydr. Polym., 114, 424 (2014)
- Shi J, Lu L, Guo W, Zhang J, Cao Y, Carbohydr. Polym., 98(1), 282 (2013)
- Le D, Kongparakul S, Samart C, Phanthong P, Karnjanakom S, Abudula A, Guan G, Carbohydr. Polym., 153, 266 (2016)
- Goncalves G, Marques PAAP, Trindade T, Pascoal C, Gandini A, J. Colloid Interface Sci., 324(1-2), 42 (2008)
- Chaichi M, Hashemi M, Badii F, Mohammadi A, Carbohydr. Polym., 157, 167 (2017)
- Samir MASA, Alloin F, Sanchez JY, Dufresne A, Polymer, 45(12), 4149 (2004)
- Abdollahi M, Alboofetileh M, Behrooz R, Rezaei M, Miraki R, Int. J. Biol. Macromol., 54, 166 (2013)
- Agustin MB, Ahmmad B, De Leon ERP, Buenaobra JL, Salazar JR, Hirose F, Polym. Compos., 34(8), 1325 (2013)
- Azeredo HMC, Mattoso LHC, Avena-Bustillos RJ, Filho GC, Munford ML, Wood D, McHugh TH, J. Food Sci., 75, N1 (2010)
- Wan Y, Luo H, He F, Liang H, Huang Y, Li XL, Compos. Sci. Technol., 69(7-8), 1212 (2009)
- Ljungberg N, Bonini C, Bortolussi F, Boisson C, Heux L, Cavaille JY, Biomacromolecules, 6(5), 2732 (2005)