화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.6, 320-324, June, 2021
Effects of Growth Ambient, Process Pressure, and Heat Treatments on the Properties of RF Magnetron Sputtered GaMgZnO UV-Range
E-mail:
Effects of growth variables and post-growth annealing on the optical, structural and electrical properties of magnetron-sputtered Ga0.04Mg0.10Zn0.86O films are characterized in detail. It is observed that films grown from pure oxygen plasma showed high resistivity, ~102 Ω·cm, whereas films grown in Ar plasma showed much lower resistivity, 2.0 × 10. 2 ~1.0 × 10-1 Ω·cm. Post-growth annealing significantly improved the electrical resistivity, to 4.3 ~ 9.0 × 10-3 Ω·cm for the vacuum annealed samples and to 1.3 ~ 3.0 × 10-3 Ω·cm for the films annealed in Zn vapor. It is proposed that these phenomena may be attributed to the improved crystalline quality and to changes in the defect chemistry. It is suggested that growth within oxygen environments leads to suppression of oxygen vacancy (Vo) donors and formation of Zn vacancy (VZn) acceptors, resulting in highly resistive films. After annealing treatment, the activation of Ga donors is enhanced, Vo donors are annihilated, and crystalline quality is improved, increasing the electron mobility and the concentration. After annealing in Zn vapor, Zn interstitial donors are introduced, further increasing the electron concentration.
  1. Du X, Mei Z, Liu Z, Guo Y, Zhang T, Hou T, Zhang Z, Xue Q, Kuznetsov AY, Adv. Mater., 4625, 21 (2009)
  2. Hwang JD, Wang SY, Hwang SB, J. Alloy. Compd., 618, 656 (2016)
  3. Zhou C, Ai Q, Chen X, Gao X, Liu K, Shen D, Chin. Phys. B, 048503, 28 (2019)
  4. Wierzbicka A, Pietrzyk MA, Reszka A, Dyczewski J, Sajkowski JM, Kozanecki A, Appl. Surf. Sci., 28, 404 (2017)
  5. Ohtomo A, Kawasaki M, Koida T, Masubuchi K, et al., Appl. Phys. Lett., 2466, 72 (1998)
  6. Yang C, Li XM, Gao XD, Cao X, Yang R, Li YZ, Solid State Commun., 264, 151 (2011)
  7. Jeong SH, Park JH, Lee BT, J. Alloy. Compd., 52, 617 (2014)
  8. Wei XQ, Huang JZ, Zhang MY, Du Y, Man BY, Mater. Sci. Eng. B-Solid State Mater. Adv. Technol., 141, 166 (2010)
  9. Park JH, Yoon NS, Lee BT, J. Cryst. Growth, 160, 381 (2013)
  10. Lee C, Jeon CH, Jeong SH, Lee BT, J. Alloy. Compd., 977, 742 (2018)
  11. Lee C, Jeong SH, Lee BT, J. Alloy. Compd., 152892, 818 (2020)
  12. Cuong HB, Lee CS, Jeong SH, Lee BT, Acta Mater., 47, 130 (2017)
  13. Gsiea AM, Goss JP, Briddon PR, Al-habashi RM, Etmimi KM, Marghani KAS, Int. J. Math. Comput. Phys. Quantum Eng., 127, 8 (2014).
  14. Lany S, Zunger A, Phys. Rev. Lett., 045501, 98 (2007)
  15. Tauc J, Grigorovici R, Vancu A, Phys. Status Solidi B, 627, 15 (1966)
  16. Liang S, Zeng-Xia M, Xiao-Long D, Chin. Phys. B, 067306-, 21 (2012)