Korean Journal of Materials Research, Vol.31, No.6, 331-338, June, 2021
Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold
E-mail:
Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three μm-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 °C molten metallic glass.
- Inoue A, Acta Mater., 48, 279 (2000)
- Nagendra N, Ramamurty U, Goh TT, Li Y, Acta Mater., 48, 2603 (2000)
- Nagata MT, Speer JG, Matlock DK, Scr. Mater., 44, 899 (2001)
- Jeon C, Ha DJ, Kim CP, Lee S, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci., 43, 3663 (2012)
- Lee PY, Hung SS, Hsieh JT, Lin YL, Lin CK, Intermetallics, 10, 1277 (2002)
- Kim SY, Park ES, Ott RT, Lograsso TA, Huh MY, Kim DH, Eckert J, Lee MH, Sci. Rep., 5, 16540 (2015)
- Degmova J, Roth S, Eckert J, Grahl H, Schultz L, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 375-377, 265 (2004)
- Johnson WL, JOM, 54, 40 (2002)
- Inoue A, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 304-306, 1 (2001)
- Kim YH, Lim KR, Kim WT, Kim DH, Choi YS, Na YS, Res. Mater., 3, 100045 (2019)
- Schroers J, Hodges JM, Kumar G, Raman H, Barnes AJ, Pham Q, Waniuk TA, Mater. Today, 14, 14 (2011)
- Mitterer C, Holler F, Ustel F, Heim D, Surf. Coat. Technol., 125, 233 (2000)
- Nunes V, Silva FJG, Andrade MF, Alexandre R, Baptista APM, Surf. Coat. Technol., 332, 319 (2017)
- Naimi S, Hosseini SM, Adv. Mech. Eng., 7, 286071 (2015)
- Knotek O, Loffler F, Schrey A, Bosserhoff B, Surf. Coat. Technol., 61, 133 (1993)
- Knotek O, Loffler F, Bosserhoff B, Surf. Coat. Technol., 62, 630 (1993)
- Grips VKW, Selvi VE, Barshilia HC, Rajam KS, Electrochim. Acta, 51(17), 3461 (2006)
- Barshilia HC, Rajam KS, Bull. Mater. Sci., 30, 607 (2007)
- Yang B, Chen L, Chang KK, Pan W, Peng YB, Du Y, Liu Y, Int. J. Refract. Met. Hard Mater., 35, 235 (2012)
- Danek M, Fernandes F, Cavaleiro A, Polcar T, Surf. Coat. Technol., 313, 158 (2017)
- Faga MG, Gautier G, Calzavarini R, Perucca M, Boot EA, Cartasegna F, Settineri L, Wear, 263, 1306 (2007)
- Tillmann W, Dildrop M, Surf. Coat. Technol., 321, 448 (2017)
- Barshilia HC, Rajam KS, Surf. Coat. Technol., 155, 195 (2002)
- Vinarcik EJ, High Integ. Die Cast. Proc., p.161, John Wiley & Sons, Hoboken, New Jersey, USA (2003).
- Shivpuri R, Semiatin SL, Fric. Lub. Wear Tech., p. 621, Mater. Park, OH, USA (1992).
- Maim S, Norstrom LA, Met. Sci., 13, 544 (1979)
- Huang B, Le W, Wang YT, Luo X, Yang YQ, Appl. Surf. Sci., 464, 10 (2019)
- Vereschaka AA, Grigoriev SN, Sitnikov NN, Oganyan GV, Batako A, Surf. Coat. Technol., 332, 198 (2017)
- Hovsepian PE, Ehiasarian AP, Ratayski U, Surf. Coat. Technol., 203, 1237 (2009)
- Hovsepian PE, Ehiasarian AP, Deeming A, Schimpf C, Vacuum, 82, 1312 (2008)
- Roos JR, Celis JP, Vancoille E, Veltrop H, Boelens S, Jungblut F, Ebberink J, Homberg H, Thin Solid Films, 193-194, 547 (1990)
- Tsutomu I, Hiroshi S, Thin Solid Films, 195, 99 (1991)
- Chim YC, Ding XZ, Zeng XT, Zhang S, Thin Solid Films, 517(17), 4845 (2009)