화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 90-97, July, 2021
Pd/SiO2 as an active and durable CH4 oxidation catalyst for vehicle applications
E-mail:
The removal of CH4 is critical to address environmental concerns for developing natural gas vehicles (NGVs), because CH4 has a 20-fold-greater contribution to the greenhouse effect than CO2. Alumina supported Pd catalysts are widely used for CH4 oxidation due to their superior catalytic activity and durability compared to other CH4 oxidation catalysts. However, the continuous deactivation of Pd-based catalysts during vehicle applications needs further development of active and durable catalysts. Here, we report that Pd/SiO2 can be active and durable catalysts for CH4 oxidation in practically relevant condition via a simple reductive regeneration. CH4 oxidation light-off curves of freshly prepared Pd/SiO2 (air, 550 °C) present higher activity than those of Pd/Al2O3, but severe deactivation was observed after hydrothermal aging (HTA, air with 10% H2O) at 850 °C. However, X-ray diffraction (XRD), scanning transmission electron microscopy (STEM) and volumetric CO adsorption suggest that Pd/SiO2 has similar particle sizes as Pd/Al2O3 even after HTA, indicating that Pd/PdO particle sintering is not the origin of the deactivation of Pd/SiO2. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) shows that the CO was not adsorbed on Pd/SiO2 after HTA, whereas it was adsorbed on Pd/Al2O3 after HTA. These results demonstrate that the deactivation of Pd/SiO2 originates mainly from the blockage of the Pd/PdO surface by the SiO2 overlayer formed during HTA. The Pd/PdO surfaces are re-exposed by a simple H2 treatment at 500 °C, resulting in CO adsorption on the Pd/PdO surface and regeneration for CH4 oxidation activity, which suggests that the Pd/PdO surface was re-exposed by a reduction treatment. This work also demonstrates that SiO2-supported Pd catalysts can be a good candidate for active and durable CH4 oxidation catalysts by using the proper regeneration protocols.
  1. Gelin P, Primet M, Appl. Catal. B: Environ., 39(1), 1 (2002)
  2. Escandon LS, Ordonez S, Vega A, Dı’ez FV, Chemosphere, 58, 9 (2005)
  3. Huang FJ, Chen JJ, Hu W, Li GX, Wu Y, Yuan SD, Zhong L, Chen YQ, Appl. Catal. B: Environ., 219, 73 (2017)
  4. Stasinska B, Machocki A, Antoniak K, Rotko M, Figueiredo JL, Goncalves F, Catal. Today, 137, 329 (2008)
  5. Persson K, Pfefferle LD, Schwartz W, Ersson A, Jaras SG, Appl. Catal. B: Environ., 74(3-4), 242 (2007)
  6. Chin YH, Resasco DE, R. Soc. Chem., 1 (1999).
  7. Kinnunen NM, Hirvi JT, Suvanto M, Pakkanen TA, J. Mol. Catal. A-Chem., 356, 20 (2012)
  8. Ciuparu D, Lyubovsky MR, Altman E, Pfefferle LD, Datye A, Catal. Rev.-Sci. Eng., 44(4), 593 (2002)
  9. Lee J, Kim MY, Jeon JH, Lee DH, Rao KN, Oh DG, Jang EJ, Kim E, Na SC, Han HS, Kwak JH, Appl. Catal. B: Environ., 260, 118098 (2020)
  10. Xiao Y, Li J, Wang C, Zhong F, Zheng Y, Jiang L, Catal. Sci. Technol., 11, 836 (2021)
  11. Chen Y, Lin J, Chen X, Fan S, Zheng Y, Catal. Sci. Technol., 11, 152 (2021)
  12. Dasireddy VDBC, Khan FB, Hanzel D, Bharuth-Ram K, Likozar B, Hyperfine Interact., 238, 29 (2017)
  13. Dasireddy VDBC, Hanzel D, Bharuth-Ram K, Likozar B, RSC Adv., 9, 30989 (2019)
  14. Jurkovic DL, Puliyalil H, Pohar A, Likozar B, Int. J. Energy Res., 43(14), 8085 (2019)
  15. Xiao L, Zhang Q, Chen P, Chen L, Ding F, Tang J, Li YJ, Au CT, Yin SF, Appl. Catal. B: Environ., 248, 380 (2019)
  16. Zhang Q, Liu JB, Chen L, Xiao CX, Chen P, Shen S, Guo JK, Au CT, Yin SF, Appl. Catal. B: Environ., 264, 118529 (2020)
  17. Chen P, Li Y, Xiao C, Chen L, Guo JK, Shen S, Au CT, Yin SF, ACS Sustain. Chem. Eng., 7, 17500 (2019)
  18. Castellazzi P, Groppi G, Forzatti P, Finocchio E, Busca G, J. Catal., 275(2), 218 (2010)
  19. Mihai O, Smedler G, Nylen U, Olofsson M, Olsson L, Catal. Sci. Technol., 7, 3084 (2017)
  20. Lin J, Chen X, Zheng Y, Huang F, Xiao Y, Zheng Y, Jiang L, Catal. Sci. Technol., 10, 4612 (2020)
  21. Lin J, Zhao L, Zheng Y, Xiao Y, Yu G, Zheng Y, Chen W, Jiang L, ACS Appl. Mater. Interfaces, 12, 56095 (2020)
  22. Muto K, Katada N, Niwa M, Appl. Catal. A: Gen., 134(2), 203 (1996)
  23. Baldwin TR, Burch R, Appl. Catal., 66, 359 (1990)
  24. Burch R, Loader PK, Urbano FJ, Catal. Today, 27(1-2), 243 (1996)
  25. Schwartz WR, Ciuparu D, Pfefferle LD, J. Phys. Chem. C, 116, 8587 (2012)
  26. Ciuparu D, Katsikis N, Pfefferle L, Appl. Catal. A: Gen., 216(1-2), 209 (2001)
  27. Auvinen P, Hirvi JT, Kinnunen NM, Suvanto M, ACS Catal., 10, 12943 (2020)
  28. Mowery DL, McCormick RL, Appl. Catal. B: Environ., 34(4), 287 (2001)
  29. Yashnik SA, Chesalov YA, Ishchenko AV, Kaichev VV, Ismagilov ZR, Appl. Catal. B: Environ., 204, 89 (2017)
  30. Hong E, Kim C, Lim DH, Cho HJ, Shin CH, Appl. Catal. B: Environ., 232, 544 (2018)
  31. Chrzan M, Chlebda D, Jodłowski P, Salomon E, Kolodziej A, Gancarczyk A, Sitarz M, Lojewska J, Top. Catal., 62, 403 (2019)
  32. Ma J, Lou Y, Cai Y, Zhao Z, Wang L, Zhan W, Guo Y, Guo Y, Catal. Sci. Technol., 8, 2567 (2018)
  33. Crozier PA, Sharma R, Datye AK, Microsc. Microanal., 4, 278 (1998)
  34. Gholami R, Smith KJ, Appl. Catal. B: Environ., 168-169, 156 (2015)
  35. Szanyi J, Kwak JH, Phys. Chem. Chem. Phys., 16, 15126 (2014)
  36. Vatansever F, Hamblin MR, Macromol. Res., 25(2), 97 (2017)
  37. Lenza RFS, Vasconcelos WL, Mater. Res., 4, 189 (2001)
  38. Chou CW, Chu SJ, Chiang HJ, Huang CY, Lee CJ, Sheen SR, Perng TP, Yeh CT, J. Phys. Chem. B, 105(38), 9113 (2001)
  39. Wang R, Li YH, Shi RH, Yang MM, J. Mol. Catal. A-Chem., 344(1-2), 122 (2011)
  40. Dai Q,Bai S, Lou Y, Wang X, Guo Y, Lu G, Nanoscale, 8, 9621 (2016)