화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 107-116, July, 2021
Enhanced cycling stability performance for supercapacitor application of NiCoAl-LDH nanofoam on modified graphite substrate
E-mail:
The high capacitive, cost-effective, non-toxic nickel.cobalt layered double hydroxide nanofoam pseudocapacitive electrode materials doped with aluminium (NiCoAl-LDH) have been hydrothermally synthesized on the electrochemically modified graphite (G) substrate with zinc and copper (Zn/G and Cu/ Zn/G). The Al3+ diffusion in the LDH during the hydrothermal synthesis resulted in an ultrathin nanofoam morphological structure well adapted to the entire surface of Zn/G and Cu/Zn/G. The high areal capacitance of the best efficient NiCoAl-LDH/Cu/Zn/G electrode of 2.17 F cm-2 at 5 mA cm-2 decreases to 1.83 mF cm-2 at 75 mA cm-2 showing an excellent rate capability of 84%. An asymmetric supercapacitor (ASC) designed with graphite as negative electrode exhibits an energy density of 29.3 Wh kg-1 at a power density of 575 W kg-1. It still remains at 5.6 Wh kg-1 at a higher power density of 3477 W kg-1 at a discharge time of 5.8 s indicating ultra-fast energy storage ability of the G//NiCoAl-LDH/Cu/Zn/G device. Its cyclic tests were also made by constructing a coin-cell-type device for industrial applications. The capacitance of the coin-cell operating within 1.6 V was protected around 100% even after over 10,000 charge.discharge cycles at the current densities up to 1.8 mA cm-2.
  1. Li h, Chen X, Zalnezhad E, Hui KN, Hui KS, Ko MJ, J. Ind. Eng. Chem., 82, 309 (2020)
  2. Zhang LY, Cai PF, Wei ZH, Liu T, Yu JG, Al-Ghamdi AA, Wageh S, J. Colloid Interface Sci., 588, 637 (2021)
  3. Yang J, Yu C, Fan X, Qiu J, Adv. Drug Deliv. Rev., 4, 1 (2014)
  4. Nagaraju G, Raju GSR, Ko YH, Yu JS, Nanoscale, 8, 812 (2016)
  5. He X, Liu Q, Liu J, Li R, Zhang H, Chen R, Wang J, J. Alloy. Compd., 724, 130 (2017)
  6. Hu CZ, Wang T, Dong JJ, Liu RP, Liu HJ, Qu JH, Appl. Surf. Sci., 459, 767 (2018)
  7. Wang X, Lin YY, Su Y, Zhang B, Li CJ, Wang H, Wang LJ, Electrochim. Acta, 225, 263 (2017)
  8. Li P, Jiao Y, Yao S, Wang L, Chen G, New J. Chem., 43, 3139 (2013)
  9. Su W, Lin T, Chu W, Zhu Y, Li J, Zhao X, RSC Adv., 6(114), 113123 (2016)
  10. Chen H, Hu L, Chen M, Yan Y, Wu L, Adv. Funct. Mater., 24, 934 (2013)
  11. Wang CH, Liu JL, Huang HY, Electrochim. Acta, 182, 47 (2015)
  12. Montemor MF, et al., Properties and Characterization Techni-ques, Springer, Switzerland, pp.681, 2016.
  13. Jabeen M, Ishaq M, Song W, Xu L, Deng Q, RSC Adv., 7, 46553 (2017)
  14. Liu L, Ma K, Liu F, Zhang X, Eur. J. Inorg. Chem., 2448 (2015).
  15. Mahjoubi FZ, Khalidi A, Abdennouri M, Barka N, J. Taibah Univ. Sci., 11, 90 (2017)
  16. Hall DS, Lockwood DJ, Bock C, Macdougall BR, Lockwood DJ, Proc. R. Soc. A, 471, 201407 (2015)
  17. Wei M, Huang Q, Zhou Y, Peng Z, Chu W, J. Energy Chem., 27, 591 (2018)
  18. Bouleghlimat E, Davies PR, Davies RJ, Howarth R, Kulhavy J, Morgan DJ, Carbon, 61, 124 (2013)
  19. Flege S, Fecher U, Hahn H, J. Non-Cryst. Solids, 270, 123 (2000)
  20. Ruan Y, Zha D, Lv L, Zhang B, Liu J, Ji X, Jiang J, Electrochim. Acta, 236, 307 (2017)
  21. Nicolet MA, Thin Solid Films, 52, 415 (1978)
  22. Patil UM, Sohn JS, Kulkarni SB, Lee SC, Park HG, Gurav KV, Kim JH, Jun SC, ACS Appl. Mater. Interfaces, 6, 2450 (2014)
  23. Chamoun M, Hertzberg BJ, Gupta T, Davies D, Bhadra S, Tassell BV, Erdonmez C, Steingart DA, NPG Asia Mater., 7, e178 (2015)
  24. Hu X, Tian X, Lin YW, Wang Z, RSC Adv., 9, 31563 (2019)
  25. Urbain F, Tang P, Carretero NM, Andreu T, Arbiol J, Morante JR, ACS Appl. Mater. Interfaces (2019).
  26. Li H, Gao Y, Wang C, Yang G, Adv. Eng. Mater., 5, 140176 (2015)
  27. Marichi RB, Sahu V, Lalwani S, Mishra M, Gupta G, Sharma RK, Singh G, J. Power Sources, 325, 762 (2016)
  28. Xu J, Ju Z, Cao J, Wang W, Wang C, Chen Z, J. Alloy. Compd., 689, 489 (2016)
  29. Gupta V, Gupta S, Miura N, J. Power Sources, 175(1), 680 (2008)
  30. Yuan JX, Yin C, Zhang Y, Chen Z, Xu Y, Wang J, Sci. Rep., 9, 5807 (2019)
  31. Huang JC, Xu PP, Cao DX, Zhou XB, Yang SN, Li YJ, Wang GL, J. Power Sources, 246, 371 (2014)
  32. Cho H, Nam JH, Park JH, Kim KM, KoBull JM, Korean Chem. Soc., 33(12), 3993 (2012)
  33. Renuka R, Srinivasan L, Ramamurthy S, Veluchamy A, Venkatakrishnan N, J. Appl. Electrochem., 31(6), 655 (2001)
  34. Zaafarany I, Boller H, Curr. World Environ., 4, 277 (2009)
  35. Huang L, Chen L, Ding Y, Feng S, Wang ZL, Liu M, Nano Lett., 13(7), 3135 (2013)
  36. Dong S, Dao AQ, Zheng BJ, Tan ZY, Fu CY, Liu HF, Xiao F, Electrochim. Acta, 152, 195 (2015)
  37. Sun HY, Lin LY, Huang YY, Hong WL, Electrochim. Acta, 281, 692 (2018)
  38. Wang J, Li X, Du X, Wang J, Ma H, Jiang X, Chem. Pap., 71, 293 (2017)
  39. Kandalkar SG, Lee HM, Seo SH, Lee K, Kim CK, J. Mater. Sci., 46(9), 2977 (2011)
  40. Liu Y, Fu N, Zhang G, Xu M, Lu W, Zhou L, Huang H, Adv. Funct. Mater., 27, 160530 (2017)
  41. Wu C, Chen L, Lou X, Ding M, Jia C, Front. Chem., 6, 1 (2019)
  42. Jana M, Saha S, Samanta P, Murmu NC, Kim NH, Kuila T, Lee JH, J. Mater. Chem. A, 4, 2188 (2016)
  43. Bisquert J, Garcia-Belmonte G, Bueno P, Longo E, Bulhoes LOS, J. Electroanal. Chem., 452(2), 229 (1998)