Journal of Industrial and Engineering Chemistry, Vol.99, 158-171, July, 2021
Phase separation of two- and three-component solution for the poly (pentyl acrylate-co-methyl methacrylate) + compressed solvents and copolymer preparation by supercritical dispersion polymerization
E-mail:
Copolymers of poly(pentyl acrylate-co-methyl methacrylate) [P(PA-co-MMA)] were manufactured by using carbon dioxide with dispersion polymerization. The thermophysical characteristics of (PA-co- MMA) were researched with three kinds ratios (1:20, 1:25, and 1:30) of PA vs. MMA and AIBN concentrations of (1.0, 2.0, and 4.0) wt%. Experimental product source at pressures of p ≤ 206 MPa and temperature of T ≤ 434 K was investigated for two- and three-components solution of P(PA-co-MMA) under compressed CO2, CHClF2, CHF3 and CH2F2. Experiments are carried out to get phase separation measurement for the two-component solution of P(PA-co-MMA) [1:25 mole ratio, AIBN of (1.0, 2.0 and 4.0 wt%] + compressed fluorine solvents (CHF3, CHClF2and CH2F2) solutions at a pressure of p < 168 MPa and temperature of (333 ≤ T ≤ 434) K. It is revealed that the CH2F2 + P(PA-co-MMA) solution is seen as the
upper critical solution temperature(UCST) type with negative curves, while the CHClF2 + P(PA-co-MMA) and CHF3 + P(PA-co-MMA) solutions appear in the lower critical solution temperature(LCST) region with positive curves. Phase equilibria curves for P(PA-co-MMA) [mole ratio 1:20 (Mw = 198,000 g mol-1), 1:25 (Mw = 249,000 g mol-1) and 1:30 (Mw = 258,000 g mol-1), AIBN of 1.0 wt%] + compressed (CHF3, CHClF2 and CH2F2) solutions depict a negative curves for CH2F2 + P(PA-co-MMA) and a positive curves for the CHF3 + P(PA-co-MMA) and CHClF2 + P(PA-co-MMA) solutions at T ≤ 434 K and at p ≤ 168 MPa. The effect of MMA co-solvent contents of (0.0-42.5) wt% [or (0.0-30.4) wt% PA, (0.0-97.1) wt% CHClF2] on phase separation for the CH2F2 + P(PA-co-MMA) (1:20 and 1:25 mole ratio, AIBN of 1.0 wt%) solutions is found in shifts of the (p, T) diagram from (LCST to UCST) slope. Phase equilibria data for P(PA-co-MMA) + (19.9- 97.1) wt% CHF3 [or (35.9-97.1) wt% CHClF2] solution in compressed CO2 is depicted from a negative slopes to a positive slopes, which means that the interaction between copolymer and (co)solvents is more favorable than the interaction between (co)solvents and (co)solvents.
Keywords:P(PA-co-MMA);Dispersion polymerization;Supercritical CO2 solvents;Cloud-point curves;CH2F2;CHClF2;CHF3
- Pyo D, Yoo J, Surh J, J. Liq. Chromatogr. Relat. Technol., 32(7), 923 (2009)
- Yeo SD, Kiran E, J. Supercrit. Fluids, 34(3), 287 (2005)
- Martin A, Varona S, Navarrete A, Cocero MJ, Open Chem. Eng. J., 4, 31 (2010)
- O'Neill ML, Cao Q, Fang R, Johnston KP, Wilkinson SP, Smith CD, Kerschner JL, Jureller SH, Ind. Eng. Chem. Res., 37(8), 3067 (1998)
- Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121 (2004)
- Kim AJ, Kim CR, Yeo WH, Byun HS, J. Chem. Thermodyn., 82, 76 (2015)
- Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
- Desimone JM, Maury EE, Menceloglu YZ, Mcclain JB, Romack TJ, Combes JR, Science, 265(5170), 356 (1994)
- Hsiao YL, Maury EE, DeSimone JM, Mawson S, Johnston KP, Macromolecules, 28, 8159 (1995)
- Ahmed TS, DeSimone JM, Roberts GW, Macromolecules, 40(26), 9322 (2007)
- Hwang HS, Lee WK, Hong SS, Jin SH, Lim KT, J. Supercrit. Fluids, 39(3), 409 (2007)
- Yuvaraj H, Hwang HS, Woo MH, Park EJ, Ganapathy HS, Gal YS, Lim KT, J. Supercrit. Fluids, 42(3), 359 (2007)
- Kim BG, Shin J, Sohn EH, Chung JS, Bae W, Kim H, Lee JC, J. Supercrit. Fluids, 55(1), 381 (2010)
- Shaffer KA, Jones TA, Canelas DA, Desimone JM, Wilkinson SP, Macromolecules, 29(7), 2704 (1996)
- Kim CR, Byun HS, J. Chem. Thermodyn., 97, 26 (2016)
- Byun HS, Kim CR, Yoon SD, J. Supercrit. Fluids, 120, 226 (2017)
- Byun HS, Hasch BM, McHugh MA, MaHling FO, Busch M, Buback M, Macromolecules, 29(5), 1625 (1996)
- Mertdogan CA, Johns Hopkins University, Baltimore, MD, 1997.
- Hasch BM, Meilchen MA, Lee SH, McHugh MA, J. Polym. Sci. B: Polym. Phys., 30, 1365 (1992)
- Matsukawa H, Shimada Y, Yoda S, Okawa Y, Naya M, Shono A, Otake K, Fluid Phase Equilib., 457, 1 (2018)
- Lee BS, Byun HS, J. Ind. Eng. Chem., 59, 403 (2018)
- DiNoia TP, Johns Hopkins University, Baltimore, MD, 2000.
- Poling BE, Prausnitz JM, O’Connell JP, The Properties of Liquids and Gases, 5th ed., McGraw-Hill, New York, 2001.
- Kim CR, Byun HS, Fluid Phase Equilib., 381, 51 (2014)
- Yoon SD, Kim AJ, Byun HS, J. Supercrit. Fluids, 86, 41 (2014)
- Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)
- Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91 (2014)
- Clark EA, Lipson JEG, Polymer, 53(2), 536 (2012)
- Patterson D, Pure Appl. Chem., 31(1-2), 133 (1972)
- Patterson D, Macromolecules, 2(6), 672 (1969)
- Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581 (1996)
- Chen SJ, Radosz M, Macromolecules, 25, 3089 (1992)
- Wolf BA, Macromol. Chem. Phys., 177, 1073 (1976)
- Cowie JMG, McEwen IJ, Polym. Int., 7, 459 (1976)
- Xie W, Pu J, MacKerell AD, Gao J, J. Chem. Theory Comput., 3(6), 1878 (2007)