화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 158-171, July, 2021
Phase separation of two- and three-component solution for the poly (pentyl acrylate-co-methyl methacrylate) + compressed solvents and copolymer preparation by supercritical dispersion polymerization
E-mail:
Copolymers of poly(pentyl acrylate-co-methyl methacrylate) [P(PA-co-MMA)] were manufactured by using carbon dioxide with dispersion polymerization. The thermophysical characteristics of (PA-co- MMA) were researched with three kinds ratios (1:20, 1:25, and 1:30) of PA vs. MMA and AIBN concentrations of (1.0, 2.0, and 4.0) wt%. Experimental product source at pressures of p ≤ 206 MPa and temperature of T ≤ 434 K was investigated for two- and three-components solution of P(PA-co-MMA) under compressed CO2, CHClF2, CHF3 and CH2F2. Experiments are carried out to get phase separation measurement for the two-component solution of P(PA-co-MMA) [1:25 mole ratio, AIBN of (1.0, 2.0 and 4.0 wt%] + compressed fluorine solvents (CHF3, CHClF2and CH2F2) solutions at a pressure of p < 168 MPa and temperature of (333 ≤ T ≤ 434) K. It is revealed that the CH2F2 + P(PA-co-MMA) solution is seen as the upper critical solution temperature(UCST) type with negative curves, while the CHClF2 + P(PA-co-MMA) and CHF3 + P(PA-co-MMA) solutions appear in the lower critical solution temperature(LCST) region with positive curves. Phase equilibria curves for P(PA-co-MMA) [mole ratio 1:20 (Mw = 198,000 g mol-1), 1:25 (Mw = 249,000 g mol-1) and 1:30 (Mw = 258,000 g mol-1), AIBN of 1.0 wt%] + compressed (CHF3, CHClF2 and CH2F2) solutions depict a negative curves for CH2F2 + P(PA-co-MMA) and a positive curves for the CHF3 + P(PA-co-MMA) and CHClF2 + P(PA-co-MMA) solutions at T ≤ 434 K and at p ≤ 168 MPa. The effect of MMA co-solvent contents of (0.0-42.5) wt% [or (0.0-30.4) wt% PA, (0.0-97.1) wt% CHClF2] on phase separation for the CH2F2 + P(PA-co-MMA) (1:20 and 1:25 mole ratio, AIBN of 1.0 wt%) solutions is found in shifts of the (p, T) diagram from (LCST to UCST) slope. Phase equilibria data for P(PA-co-MMA) + (19.9- 97.1) wt% CHF3 [or (35.9-97.1) wt% CHClF2] solution in compressed CO2 is depicted from a negative slopes to a positive slopes, which means that the interaction between copolymer and (co)solvents is more favorable than the interaction between (co)solvents and (co)solvents.
  1. Pyo D, Yoo J, Surh J, J. Liq. Chromatogr. Relat. Technol., 32(7), 923 (2009)
  2. Yeo SD, Kiran E, J. Supercrit. Fluids, 34(3), 287 (2005)
  3. Martin A, Varona S, Navarrete A, Cocero MJ, Open Chem. Eng. J., 4, 31 (2010)
  4. O'Neill ML, Cao Q, Fang R, Johnston KP, Wilkinson SP, Smith CD, Kerschner JL, Jureller SH, Ind. Eng. Chem. Res., 37(8), 3067 (1998)
  5. Beckman EJ, J. Supercrit. Fluids, 28(2-3), 121 (2004)
  6. Kim AJ, Kim CR, Yeo WH, Byun HS, J. Chem. Thermodyn., 82, 76 (2015)
  7. Cho SH, Kim CR, Yoon SD, Byun HS, Fluid Phase Equilib., 396, 74 (2015)
  8. Desimone JM, Maury EE, Menceloglu YZ, Mcclain JB, Romack TJ, Combes JR, Science, 265(5170), 356 (1994)
  9. Hsiao YL, Maury EE, DeSimone JM, Mawson S, Johnston KP, Macromolecules, 28, 8159 (1995)
  10. Ahmed TS, DeSimone JM, Roberts GW, Macromolecules, 40(26), 9322 (2007)
  11. Hwang HS, Lee WK, Hong SS, Jin SH, Lim KT, J. Supercrit. Fluids, 39(3), 409 (2007)
  12. Yuvaraj H, Hwang HS, Woo MH, Park EJ, Ganapathy HS, Gal YS, Lim KT, J. Supercrit. Fluids, 42(3), 359 (2007)
  13. Kim BG, Shin J, Sohn EH, Chung JS, Bae W, Kim H, Lee JC, J. Supercrit. Fluids, 55(1), 381 (2010)
  14. Shaffer KA, Jones TA, Canelas DA, Desimone JM, Wilkinson SP, Macromolecules, 29(7), 2704 (1996)
  15. Kim CR, Byun HS, J. Chem. Thermodyn., 97, 26 (2016)
  16. Byun HS, Kim CR, Yoon SD, J. Supercrit. Fluids, 120, 226 (2017)
  17. Byun HS, Hasch BM, McHugh MA, MaHling FO, Busch M, Buback M, Macromolecules, 29(5), 1625 (1996)
  18. Mertdogan CA, Johns Hopkins University, Baltimore, MD, 1997.
  19. Hasch BM, Meilchen MA, Lee SH, McHugh MA, J. Polym. Sci. B: Polym. Phys., 30, 1365 (1992)
  20. Matsukawa H, Shimada Y, Yoda S, Okawa Y, Naya M, Shono A, Otake K, Fluid Phase Equilib., 457, 1 (2018)
  21. Lee BS, Byun HS, J. Ind. Eng. Chem., 59, 403 (2018)
  22. DiNoia TP, Johns Hopkins University, Baltimore, MD, 2000.
  23. Poling BE, Prausnitz JM, O’Connell JP, The Properties of Liquids and Gases, 5th ed., McGraw-Hill, New York, 2001.
  24. Kim CR, Byun HS, Fluid Phase Equilib., 381, 51 (2014)
  25. Yoon SD, Kim AJ, Byun HS, J. Supercrit. Fluids, 86, 41 (2014)
  26. Chirico RD, Frenkel M, Diky VV, Marsh KN, Wilhoit RC, J. Chem. Eng. Data, 48(5), 1344 (2003)
  27. Yoon SD, Byun HS, J. Chem. Thermodyn., 71, 91 (2014)
  28. Clark EA, Lipson JEG, Polymer, 53(2), 536 (2012)
  29. Patterson D, Pure Appl. Chem., 31(1-2), 133 (1972)
  30. Patterson D, Macromolecules, 2(6), 672 (1969)
  31. Rindfleisch F, DiNoia TP, McHugh MA, J. Phys. Chem., 100(38), 15581 (1996)
  32. Chen SJ, Radosz M, Macromolecules, 25, 3089 (1992)
  33. Wolf BA, Macromol. Chem. Phys., 177, 1073 (1976)
  34. Cowie JMG, McEwen IJ, Polym. Int., 7, 459 (1976)
  35. Xie W, Pu J, MacKerell AD, Gao J, J. Chem. Theory Comput., 3(6), 1878 (2007)