화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 172-178, July, 2021
Phase separation phenomena and thermodynamics of octylphenol polyoxyethylene ether in micellar solutions: Effect of high concentration of inorganic salts and linear correlation
E-mail:
The phase separationphenomena or cloud points (CP) behaviorof nonionic octylphenol polyoxyethylene ether with oxyethylene glycol ether unit of 15 (OP-15) were investigated in aqueous micellar solutions containing high concentrations of inorganic salts including NaCl, KCl, MgCl2, CaCl2, BaCl2, AlCl3, FeCl3, Na2SO4and Na2SiO3. The change in CP induced by salts and its mechanism are discussed theoretically. In aqueous solutions containing high concentration of salt, for the first time the linear relationship between CP and salt concentrationiswellestablishedtocharacterizethedepressionofCP.Basedonpseudophaseseparatio model, thermodynamic parameters are estimated and adopted to further describe the phase separation process and the interactions between OP-15 molecules or the OP-15/water interactions. Thermodynamic parameters including standard Gibbs energy change (ΔG0 CP), enthalpy change (ΔH0 CP) and entropy change (ΔS0 CP) indicate that the additions of different salts result in the change in entropy-driven nonspontaneous process of phase separation. These data, which are from the compensation temperatures and the change of molar heat capacity, also prove that different ions induce the change in the interactions between surfactant molecules or the surfactant.water interaction and thus affect the depression of CP. These findings help with understanding the effect of inorganic salts, especially the high concentration of salt, on CP of nonionic surfactant and then broadening the application of nonionic surfactant based on CP such as the extraction of biomaterials in biological samples derived from animals or plants, etc.
  1. Yakasai F, Jaafar MZ, Bandyopadhyay S, Agi A, J. Ind. Eng. Chem., 93, 138 (2021)
  2. Freire MG, Neves CMSS, Marrucho IM, Lopes JNC, Rebelo LPN, Coutinho JAP, Green Chem., 12, 1715 (2010)
  3. Deive FJ, Rodriguez A, Pereiro AB, Araujo AMM, Longo MA, Coelho MAZ, Lopes JNC, Esperanca JMSS, Rebelo LPN, Marrucho IM, Green Chem., 13, 390 (2011)
  4. Rosen MJ, Junkappu JT, Surfactants and Interfacial Phenomena, fourth ed., Wiley-Interscience, Hoboken, NL, 2012.
  5. Purkait MK, DasGupta S, De S, J. Hazard. Mater., 137(2), 827 (2006)
  6. Ghouas H, Haddou B, Kameche M, Louhibi L, Derriche Z, Canselier JP, Gourdon C, Sep. Sci. Technol., 49, 2142 (2014)
  7. Schott H, Colloids Surf. A: Physicochem. Eng. Asp., 186, 129 (2001)
  8. Byun HS, J. Ind. Eng. Chem., 90, 76 (2020)
  9. Wang S, Jiao J, Wang X, Ga Q, Kou P, Xu W, Luo M, Zhao C, Fu YJ, J. Ind. Eng. Chem., 70, 402 (2019)
  10. Ulloa G, Coutens C, Sanchez M, Sineiro J, Rodriguez A, Deive FJ, Nunez MJ, J. Chem. Thermodyn., 47, 62 (2012)
  11. Goel SK, J. Colloid Interface Sci., 212(2), 604 (1999)
  12. Ren ZH, Luo Y, Zheng YC, Shi DP, Mei P, Li FS, J. Solution Chem., 43, 853 (2014)
  13. Ren ZH, Huang J, Luo Y, Zheng YC, Mei P, Lai L, Chang YL, J. Ind. Eng. Chem., 36, 263 (2016)
  14. Ren ZH, Ind. Eng. Chem. Res., 54(40), 9683 (2015)
  15. Ren ZH, Luo Y, Tenside Surfact. Det., 50, 369 (2013)
  16. Huang J, Ren ZH, J. Mol. Liq., 316, 113793 (2020)
  17. Berger PD, Berger CH, US: 7556098 B2, 2009-7-7.
  18. Fang Q, Yeung HW, Leung HW, Huie CW, J. Chromatogr. A, 904, 47 (2000)
  19. Paleologos EK, Chytiyi SD, Savvaidis IN, Kontominas M, J. Chromatogr. A, 1010, 217 (2003)
  20. Chawla J, Mahajan RK, J. Dispersion Sci. Technol., 32, 822 (2011)
  21. Ren ZH, Huang J, Zheng YC, Lai L, Hu LL, J. Chem. Eng. Data, 62(6), 1782 (2017)
  22. Ray A, Nature, 231, 313 (1971)
  23. Ren ZH, Huang J, Lai L, Yu XR, Shi DP, Chang YL, J. Taiwan Inst. Chem. Eng., 96, 29 (2019)
  24. Ren ZH, Huang J, Zheng YC, Lai L, Yu XR, Chang YL, Li JG, Zhang GH, J. Dispersion Sci. Technol., 40, 1353 (2019)
  25. Gu T, Sjoblom J, Colloids Surf., 64, 39 (1992)
  26. Molina-Bolivar JA, Hierrezuelo JM, Ruiz CC, J. Chem. Thermodyn., 57, 59 (2013)
  27. Batigoc C, Akbas H, Boz M, J. Chem. Thermodyn., 43(12), 1800 (2011)
  28. Majhi PR, Mukherjee K, Moulik SP, Sen S, Sahu NP, Langmuir, 15(20), 6624 (1999)
  29. Ren ZH, Huang J, Zheng YC, Lai L, Hu LL, J. Mol. Liq., 236, 101 (2017)
  30. Zhao Y, Clar JG, Li L, Xu J, Yuan T, Bonzongo J, Ziegler K, Chem. Commun., 52, 2928 (2016)
  31. Sheng R, Ding QY, Ren ZH, Li DN, Fan SC, Cai LL, Quan XF, Wang Y, Zhang YX, Wang H, Wang JR, Yi MT, Cao YX, Zhang QH, J. Mol. Liq., 334, 116064 (2021)
  32. Pan A, Rakshit AK, Moulik SP, Colloids Surf. A: Physicochem. Eng. Asp., 495, 248 (2016)
  33. Perez-Benito JF, Mulero-Raichs M, J. Phys. Chem. A, 120, 7598 (2016)
  34. Battistuzzi G, Bellei M, Borsari M, Canters GW, Waals E, Jeuken LJC, Ranieri A, Sola M, Biochemistry, 42, 9214 (2003)
  35. Kundu K, Bidyut KP, Colloid Polym. Sci., 291, 613 (2013)
  36. Hierrezuelo JM, Molina-Bolivar JA, Ruiz CC, Entropy, 16, 4375 (2014)
  37. Tsui HW, Hsu YH, Wang JH, Chen LJ, Langmuir, 24, 13585 (2008)
  38. Hierrezudlo JM, Molina-Bolivar JA, Ruiz CC, Entropy, 16, 4375 (2014)
  39. Armstrong JK, Leharne SA, Stuart BH, Snowden MJ, Chowdhry BZ, Langmuir, 17(15), 4482 (2001)