화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 235-245, July, 2021
Preparation of uniformly sized interpenetrating polymer network polyelectrolyte hydrogel droplets from a solid-state liquid crystal shell
E-mail:
Uniformly sized interpenetrating polymer network (IPN) polyelectrolyte hydrogel droplets were produced with solid-state liquid crystal (LCsolid) shells, which had been produced by a microfluidic method. The weak polyelectrolyte hydrogel and the temperature-responsive poly(N-isopropylacryla-mide) (PNIPAM) networks were intertwined in the LCsolid shell to produce an IPN structure; the anionic poly(acrylic acid) (PAA) and cationic poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA) were utilized for the weak polyelectrolyte hydrogel networks. The anionic PNIPAM/PAA, cationic PNIPAM/PDMAPMA, and zwitterionic PAA/PDMAPMA IPN droplets were successfully produced by the LCsolid shell templates. The PNIPAM/PAA IPN droplets were applied to a Ca2+ sensor. Further, the anionic PNIPAM/PAA and cationic PNIPAM/PDMAPMA IPN droplets could adsorb the cationic methylene blue and anionic Acid Red 37 dyes, respectively, while the zwitterionic PAA/PDMAPMA IPN droplets could adsorb both dyes. This method of producing uniformly sized IPN hydrogel droplets from LCsolid shell templates is simple and does not require any sophisticated machines.
  1. Jung S, McConaghy KI, Kaar JL, Stoykovich MP, ACS Appl. Mater. Interfaces, 9, 27927 (2017)
  2. Han L, Whang Y, Lu X, Wang K, Wang Z, Zhang H, ACS Appl. Mater. Interfaces, 8, 29088 (2016)
  3. Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, Xu X, Sun H, Yu K, Yang B, Lin Q, ACS Nano, 10, 5856 (2016)
  4. Huang SB, Guo XH, Li L, Dong YM, J. Phys. Chem. B, 116(33), 10079 (2012)
  5. Ma B, Ju XJ, Luo F, Liu YQ, Wang Y, Liu Z, Wang W, Xie R, Chu LY, ACS Appl. Mater. Interfaces, 9, 14409 (2017)
  6. Subramania G, Biswas R, Constant K, Sigalas MM, Ho KM, Macromolecules, 42, 1229 (2009)
  7. Dragan ES, Cocarta AI, ACS Appl. Mater. Interfaces, 8, 12018 (2016)
  8. Liao J, Huang H, Cellulose, 27, 825 (2020)
  9. Gong JP, Katsuyama Y, Kurokawa T, Osada Y, Adv. Mater., 15, 1155 (2003)
  10. Cooper BG, Lawson TB, Snyder BD, Grinstaff MW, Osteoarthr. Cartil., 25, 1143 (2017)
  11. Ma X, Liu X, Wang P, Yang R, Liu S, Ye Z, Chi B, ACS Appl. Bio Mater., 3, 4036 (2020)
  12. Naranjo A, Martin C, Diazc AL, Pacheco AM, Rodriguez AM, Patino FJ, Herrero MA, Vazquez AS, Vazquez E, Appl. Mater. Today, 21, 100806 (2020)
  13. Hu Z, Xia X, Adv. Mater., 16, 4 (2004)
  14. Zhou J, Wang GN, Zou L, Tang LP, Marquez M, Hu ZB, Biomacromolecules, 9(1), 142 (2008)
  15. Ochi M, Ida J, Matsuyama T, Yamamoto H, J. Appl. Polym. Sci., 41814 (2015).
  16. Eswaramma S, Rao KSVK, Carbohydr. Polym., 156, 125 (2017)
  17. Gwon SJ, Park SY, Polym. Chem., 11, 5444 (2020)
  18. Heo IS, Park SY, Sens. Actuators B-Chem., 251, 658 (2017)
  19. Yan J, Zeng L, Ren Heide EVD, Biosurf. Biotribol., 1, 2 (2015)
  20. Rahman S, et al., Cellulose-Based Superabsorbent Hydrogels, Springer, Cham, Switzerland, pp.819, 2019.
  21. Lu L, Lukuan H, Manli S, Weixing L, Weihong W, J. Appl. Polym. Sci., 48049 (2019).
  22. Yong P, Yang Y, Wang Z, Yang L, Chen J, RSC Adv., 6, 88306 (2016)
  23. Gutmayer D, Thomann R, Bakowsky U, Schubert R, Biomacromolecules, 7(5), 1422 (2006)
  24. Mishra RK, Ramasamy K, Majeed ABA, Appl. Polym. Sci., 126, 98 (2012)
  25. Bonapasta AA, Buda F, Colombet P, Chem. Mater., 13, 64 (2001)
  26. Jv XJ, Zhao XW, Ge HC, Sun JY, Li H, Wang QS, Lu HG, J. Chem. Eng. Data, 64(3), 1228 (2019)
  27. Wang LW, Yu L, Zeng CF, Wang CQ, Zhang LX, Langmuir, 34(24), 7106 (2018)