Journal of Industrial and Engineering Chemistry, Vol.99, 235-245, July, 2021
Preparation of uniformly sized interpenetrating polymer network polyelectrolyte hydrogel droplets from a solid-state liquid crystal shell
E-mail:
Uniformly sized interpenetrating polymer network (IPN) polyelectrolyte hydrogel droplets were
produced with solid-state liquid crystal (LCsolid) shells, which had been produced by a microfluidic method. The weak polyelectrolyte hydrogel and the temperature-responsive poly(N-isopropylacryla-mide) (PNIPAM) networks were intertwined in the LCsolid shell to produce an IPN structure; the anionic poly(acrylic acid) (PAA) and cationic poly(N-[3-(dimethylamino)propyl] methacrylamide) (PDMAPMA) were utilized for the weak polyelectrolyte hydrogel networks. The anionic PNIPAM/PAA, cationic PNIPAM/PDMAPMA, and zwitterionic PAA/PDMAPMA IPN droplets were successfully produced by the LCsolid shell templates. The PNIPAM/PAA IPN droplets were applied to a Ca2+ sensor. Further, the anionic PNIPAM/PAA and cationic PNIPAM/PDMAPMA IPN droplets could adsorb the cationic methylene blue and anionic Acid Red 37 dyes, respectively, while the zwitterionic PAA/PDMAPMA IPN droplets could adsorb both dyes. This method of producing uniformly sized IPN hydrogel droplets from LCsolid shell templates is simple and does not require any sophisticated machines.
- Jung S, McConaghy KI, Kaar JL, Stoykovich MP, ACS Appl. Mater. Interfaces, 9, 27927 (2017)
- Han L, Whang Y, Lu X, Wang K, Wang Z, Zhang H, ACS Appl. Mater. Interfaces, 8, 29088 (2016)
- Zhao Y, Shi C, Yang X, Shen B, Sun Y, Chen Y, Xu X, Sun H, Yu K, Yang B, Lin Q, ACS Nano, 10, 5856 (2016)
- Huang SB, Guo XH, Li L, Dong YM, J. Phys. Chem. B, 116(33), 10079 (2012)
- Ma B, Ju XJ, Luo F, Liu YQ, Wang Y, Liu Z, Wang W, Xie R, Chu LY, ACS Appl. Mater. Interfaces, 9, 14409 (2017)
- Subramania G, Biswas R, Constant K, Sigalas MM, Ho KM, Macromolecules, 42, 1229 (2009)
- Dragan ES, Cocarta AI, ACS Appl. Mater. Interfaces, 8, 12018 (2016)
- Liao J, Huang H, Cellulose, 27, 825 (2020)
- Gong JP, Katsuyama Y, Kurokawa T, Osada Y, Adv. Mater., 15, 1155 (2003)
- Cooper BG, Lawson TB, Snyder BD, Grinstaff MW, Osteoarthr. Cartil., 25, 1143 (2017)
- Ma X, Liu X, Wang P, Yang R, Liu S, Ye Z, Chi B, ACS Appl. Bio Mater., 3, 4036 (2020)
- Naranjo A, Martin C, Diazc AL, Pacheco AM, Rodriguez AM, Patino FJ, Herrero MA, Vazquez AS, Vazquez E, Appl. Mater. Today, 21, 100806 (2020)
- Hu Z, Xia X, Adv. Mater., 16, 4 (2004)
- Zhou J, Wang GN, Zou L, Tang LP, Marquez M, Hu ZB, Biomacromolecules, 9(1), 142 (2008)
- Ochi M, Ida J, Matsuyama T, Yamamoto H, J. Appl. Polym. Sci., 41814 (2015).
- Eswaramma S, Rao KSVK, Carbohydr. Polym., 156, 125 (2017)
- Gwon SJ, Park SY, Polym. Chem., 11, 5444 (2020)
- Heo IS, Park SY, Sens. Actuators B-Chem., 251, 658 (2017)
- Yan J, Zeng L, Ren Heide EVD, Biosurf. Biotribol., 1, 2 (2015)
- Rahman S, et al., Cellulose-Based Superabsorbent Hydrogels, Springer, Cham, Switzerland, pp.819, 2019.
- Lu L, Lukuan H, Manli S, Weixing L, Weihong W, J. Appl. Polym. Sci., 48049 (2019).
- Yong P, Yang Y, Wang Z, Yang L, Chen J, RSC Adv., 6, 88306 (2016)
- Gutmayer D, Thomann R, Bakowsky U, Schubert R, Biomacromolecules, 7(5), 1422 (2006)
- Mishra RK, Ramasamy K, Majeed ABA, Appl. Polym. Sci., 126, 98 (2012)
- Bonapasta AA, Buda F, Colombet P, Chem. Mater., 13, 64 (2001)
- Jv XJ, Zhao XW, Ge HC, Sun JY, Li H, Wang QS, Lu HG, J. Chem. Eng. Data, 64(3), 1228 (2019)
- Wang LW, Yu L, Zeng CF, Wang CQ, Zhang LX, Langmuir, 34(24), 7106 (2018)