화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.99, 388-395, July, 2021
Continuous synthesis of nickel/cobalt/manganese hydroxide microparticles in Taylor.Couette reactors
E-mail:,
Taylor-Couette flow based reactors have been used to prepare nickel/cobalt/manganese hydroxide particles. The experiments performed in small volume reactors at the laboratory level have yielded satisfactory results. However, to commercialize Taylor-Couette reactors, parametric studies considering various operating conditions must be conducted. In this work, the synthesis of nickel/cobalt/manganese hydroxides was examined in two reactors with different size and operating conditions. Specifically, the effects of the RPM and pH were investigated by measuring the mean diameter and tap density after the saturation of the particle growth in the given reactors. The results were used to define the design criteria to determine the mean diameter and tap density by comparing the experimental results with the results reported in the literature. Furthermore, the correlation between the shear rate and particle size was analyzed to predict the particle growth in scale-up reactors based on Parker's theory.
  1. Besenhard J, Yang J, Winter M, J. Process Control, 68(1), 87 (1997)
  2. Sheu SP, Yao CY, Chen JM, Chiou YC, J. Power Sources, 68(2), 533 (1997)
  3. Lu CH, Lin SW, J. Power Sources, 97, 458 (2001)
  4. Chung DW, Shearing PR, Brandon NP, Harris SJ, Garcia RE, J. Electrochem. Soc., 161(3), A422 (2014)
  5. Yabuuchi N, Kubota K, Aoki Y, Komaba S, J. Phys. Chem. C, 120(2), 875 (2016)
  6. Mei W, Chen H, Sun J, Wang Q, Sustain. Energy Fuels, 3(1), 148 (2019)
  7. Yang S, Wang X, Yang X, Liu Z, Wei Q, Shu H, Int. J. Electrochem., 2012 (2012)
  8. Liu Z, Yu A, Lee JY, J. Power Sources, 81, 416 (1999)
  9. Li DC, Sasaki Y, Kageyama M, Kobayakawa K, Sato Y, J. Power Sources, 148, 85 (2005)
  10. Kim JM, Chang SM, Chang JH, Kim WS, Colloids Surf. A: Physicochem. Eng. Asp., 384(1-3), 31 (2011)
  11. Mayra QP, Kim WS, Cryst. Growth Des., 15(4), 1726 (2015)
  12. Marchal P, David R, Klein J, Villermaux J, Chem. Eng. Sci., 43(1), 59 (1988)
  13. Baldyga J, Orciuch W, Chem. Eng. Sci., 56(7), 2435 (2001)
  14. Marchisio DL, Vigil RD, Fox RO, Chem. Eng. Sci., 58(15), 3337 (2003)
  15. Puel F, Fevotte G, Klein JP, Chem. Eng. Sci., 58(16), 3715 (2003)
  16. Vetter T, Iggland M, Ochsenbein DR, Hanseler FS, Mazzotti M, Cryst. Growth Des., 13(11), 4890 (2013)
  17. Van Bommel A, Dahn J, Chem. Mater., 21(8), 1500 (2009)
  18. Ramesh P, Bharadwaj S, Alam M, J. Fluid Mech., 870, 901 (2019)
  19. Ramesh P, Alam M, Phys. Rev. Fluids, 5(4), 042301 (2020)
  20. Cross M, Greenside H, Pattern Formation and Dynamics in Nonequilibrium Systems, Cambridge University Press, 2009.
  21. Parker DS, Kaufman WJ, Jenkins D, J. Water Pollut. Control Fed., 1817 (1971).
  22. Jarvis P, Jefferson B, Gregory J, Parsons SA, Water Res., 39, 3121 (2005)
  23. Serra T, Colomer J, Casamitjana X, J. Colloid Interface Sci., 187(2), 466 (1997)
  24. Kang SH, Lee SG, Jung WM, Kim MC, Kim WS, Choi CK, Feigelson RS, J. Cryst. Growth, 254(1), 196 (2003)
  25. Jung WM, Kang SH, Kim WS, Choi CK, Chem. Eng. Sci., 55(4), 733 (2000)
  26. Mietta F, Chassagne C, Manning AJ, Winterwerp JC, Ocean Dyn., 59(5), 751 (2009)
  27. Zaccone A, Soos M, Lattuada M, Wu H, Babler MU, Morbidelli M, Phys. Rev. E, 79, 061401 (2009)
  28. Kim JE, Kim WS, Cryst. Growth Des., 17(7), 3677 (2017)
  29. Mezaal MA, Qu L, Li G, Liu W, Zhao X, Zhang K, Zhang R, Lei L, J. Solid State Electrochem., 21(1), 145 (2017)
  30. Thai DK, Mayra QP, Kim WS, Powder Technol., 274, 5 (2015)
  31. Zhang Y, Wang ZB, Nie M, Yu FD, Xia YF, Liu BS, Xue Y, Zheng LL, Wu J, RSC Adv., 6(70), 65941 (2016)