화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 233-247, August, 2021
Flexible conductive nanocomposite PEDOT:PSS/Te nanorod films for superior electromagnetic interference (EMI) shielding: A new exploration
E-mail:
How to gain excellent bendable, easily-processable, flexible and high conducting materials with maintaining their brilliant electromagnetic shielding functions has become a great challenge, which hinders its potential applications. In this regard, a polymeric nanocomposite based on telluride (Te) nanorods embedded into poly(3,4-ethylene-dioxythiophene):poly (styrenesulphonate) (Te/PEDOT:PSS) films have been applied for the electromagnetic interference (EMI) wave shielding for the first time. Te/ PEDOT:PSS shields with high Te dispersion, excellent adhesion property, good distribution, high compatibility and high anisotropic conductivity (δ// = 87.87 ± 5 and δ⊥ = 36. 78 ± 3 S/cm at 20 wt.%) have a brilliant shielding effectiveness SET = 60.88 dB at 12 GHz for 20 wt.%. The dielectric constants of the shields show an exponential decay behavior with the giga-hertz frequency regime (1-12 GHz). The ε' > 1 improves with increasing the Te content due to the growth in the interfacial polarization and the free charge carrier’s concentrations inside the shield. The main mechanism beyond shielding effectiveness is the absorption. The impact of 0.1 M of various functionalized (benzene BSA, p-toluene TSA and Chompor CSA) sulfonic acid on the δ//, δ⊥ and SET values has significantly studied by treating the (20 wt.% Te/ PEDOT:PSS) shield with these acids. It has been found that the increase in the anisotropic δBSA > δTSA > δCSA is reflected by the increase in SET (BSA) > SET (TSA) > SET (CSA) due to the planar structure of BSA and TSA acids. This study offers an excellent bendable, easily-processable, flexible, conducting and brilliant absorber of EM wave based on Te/PEDOT:SS nanocomposite that can be ranked as one of the highest shields. Finally, it has been expected that this nanocomposite to be applied in biological, EM shields, wearable and electronic devices at an affordable cost.
  1. Khodiri AA, Al-Ashry MY, El-Shamy AG, J. Alloy. Compd., 847, 156430 (2020)
  2. El-Shamy AG, Prog. Org. Coat., 146, 105747 (2020)
  3. El-Shamy AG, J. Alloy. Compd., 810, 151940 (2019)
  4. Al-Ghamdi AA, Al-Ghamdi AA, Al-Turki Y, Yakuphanoglu F, El-Tantawy F, Compos. B Eng., 88, 212 (2016)
  5. Lim GH, Kwon NY, Han EJ, Bok SG, Lee SE, Lim BK, J. Ind. Eng. Chem., 93, 245 (2021)
  6. Qin F, Brosseau C, J. Appl. Phys., 111, 061301 (2012)
  7. Faisal M, Khasim S, J. Mater. Sci. Mater. Electron., 24, 2202 (2013)
  8. Li Y, Chen C, Li JT, Zhang S, Ni Y, Cai S, Huang J, Nanoscale Res. Lett., 5, 1170 (2010)
  9. Naidu KCB, RoopasKiran S, Madhuri W, Mater. Res. Bull., 89, 125 (2017)
  10. Lee SH, Kang D, Oh IK, Carbon, 111, 248 (2017)
  11. Zhang Y, Qiu M, Yu Y, Wen B, Cheng L, ACS Appl. Mater. Interfaces, 9, 809 (2017)
  12. Zhao H, Hou L, Bi S, Lu Y, ACS Appl. Mater. Interfaces, 9, 33059 (2017)
  13. Xu Y, Yang Y, Yan DX, Duan H, Zhao G, Liu Y, ACS Appl. Mater. Interfaces, 10, 19143 (2018)
  14. Li P, Du D, Guo L, Guo Y, Ouyang J, J. Mater. Chem. C, 4, 6525 (2016)
  15. Bora PJ, Anil AG, Ramamurthy PC, Tan DQ, Mater. Adv., 1, 177 (2020)
  16. Agnihotri N, Chakrabarti K, De A, RSC Adv., 5, 43765 (2015)
  17. Liu R, Miao M, Li Y, Zhang J, Cao S, Feng X, ACS Appl. Mater. Interfaces, 10, 44787 (2018)
  18. Wan YJ, Li XM, Zhu PL, Sun R, Wong CP, Liao WH, Compos. A, 130, 105764 (2020)
  19. Geetha S, Kumar KKS, Rao CRK, Vijayan M, Trivedi DC, J. Appl. Polym. Sci., 112(4), 2073 (2009)
  20. El-Shamy AG, Mater. Chem. Phys., 257, 123762 (2021)
  21. Du Y, Shen SZ, Cai KF, Casey PS, Prog. Polym. Sci, 37, 820 (2012)
  22. Bora PJ, Anil AG, Vinoy KJ, Ramamurthy PC, Adv. Mater. Interfaces, 6, 190135 (2019)
  23. Bae EJ, Kang YH, Jang KS, Cho SY, Sci. Rep., 6, 18805 (2016)
  24. Xi G, Liu Y, Wang X, Liu X, Peng Y, Qian Y, Cryst. Growth Des., 6, 2567 (2006)
  25. Kumar A, Battabyal M, Chauhan A, Suresh G, Gopalan R, Kumar NVR, Satapathy DK, Mater. Res. Exp., 6, 115302 (2019)
  26. Meng Q, Jiang Q, Cai K, Chen L, Org. Electron., 64, 79 (2019)
  27. See KC, Feser JP, Chen CE, Majumdar A, Urban JJ, Segalman RA, Nano Lett., 10, 4664 (2010)
  28. El-Shamy AG, Chem. Eng. J., 417, 129212 (2021)
  29. El-Shamy AG, Compos. B, 174, 106993 (2019)
  30. Attallah MA, Elrasasi TY, Shash NM, El-Shaarawy MG, El-Tantawy F, El-Shamy AG, Mater. Sci. Semicond. Process, 126, 105653 (2021)
  31. El-Shamy AG, Polymer, 202, 122565 (2020)
  32. El-Shamy AG, Mater. Sci. Semicond. Process, 100, 245 (2019)
  33. El-Shamy AG, Mater. Chem. Phys., 243, 122640 (2020)
  34. El-Shamy AG, Prog. Org. Coat., 150, 105981 (2021)
  35. El-Shamy AG, Attia W, Abd El-Kader KM, J. Alloy. Compd., 590, 309 (2014)
  36. El-Shamy AG, Zayied HSS, Synth. Met., 259, 116218 (2020)
  37. El-Shamy AG, Maati AA, Attia W, Abd El-Kader KM, J. Alloy. Compd., 744, 701 (2018)
  38. El-Shamy AG, Prog. Org. Coat., 127, 252 (2019)
  39. El-Shamy AG, Sens. Actuators B-Chem., 329, 129154 (2021)
  40. Song H, Cai K, Energy, 125, 519 (2017)
  41. El-Shamy AG, Synth. Met., 267, 116472 (2020)
  42. El-Shamy AG, Attia WM, Abd El Kader KM, Mater. Chem. Phys., 191, 225 (2017)
  43. Dhakate SR, Subhedar KM, Singh BP, RSC Adv., 5, 43036 (2015)
  44. Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM, Koo CM, Gogotsi Y, Science, 353(6304), 1137 (2016)
  45. Thomassin JM, Jerome C, Pardoen T, Bailly C, Huynen I, Detrembleur C, Mater. Sci. Eng. R, 74, 211 (2013)
  46. Naidu KCB, Madhuri W, Mater. Chem. Phys., 187, 164 (2017)
  47. Naidu KCB, RoopasKiran S, Madhuri W, IEEE Trans. Magn., 53, 1 (2017)
  48. Guirguis OW, Moselhey MTH, Nat. Sci., 4, 57e67 (2012)
  49. Peng Z, Kong LX, Li SD, J. Appl. Polym. Sci., 96(4), 1436 (2005)
  50. Wu L, Wu F, Sun Q, Shi J, Xie A, Zhu X, Dong W, J. Mater. Chem. C, 9, 3316 (2021)
  51. Huo Y, Zhao K, Miao P, Kong J, Xu Z, Wang K, Li F, Tang Y, ACS Sustain. Chem. Eng., 8(28), 10490 (2020)
  52. Shui X, Chung DDL, J. Electron. Mater., 26(8), 928 (1997)
  53. Li L, Chung DDL, Composites, 25(3), 215 (1994)
  54. Al-Saleh MH, Gelves GA, Sundararaj U, Compos. A, 42(1), 92 (2011)
  55. Wen S, Chung DDL, Cem. Concr. Res., 34(2), 329 (2004)
  56. Zhang HB, Yan Q, Zheng WG, He Z, Yu ZZ, ACS Appl. Mater. Interfaces, 3(3), 918 (2011)
  57. Eswaraiah V, Sankaranarayanan V, Ramaprabhu S, Macromol. Mater. Eng., 296(10), 894 (2011)
  58. Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y, Carbon, 47(3), 922 (2009)
  59. Chen ZP, Xu C, Ma CQ, Ren WC, Cheng HM, Adv. Mater., 25(9), 1296 (2013)
  60. Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC, Nano Lett., 6(6), 1141 (2006)
  61. Yang Y, Gupta MC, Dudley KL, Lawrence RW, Nano Lett., 5(11), 2131 (2005)
  62. Al-Saleh MH, Sundararaj U, Carbon, 47(7), 1738 (2009)
  63. Wen B, Cao MS, Lu MM, Cao WQ, Shi HL, Liu J, Wang XX, Jin HB, Fang XY, Wang WZ, Yuan J, Adv. Mater., 26(21), 3484 (2014)
  64. Kim HM, Kim K, Lee CY, Joo J, Cho SJ, Yoon HS, Pejakovic DA, Yoo JW, Epstein AJ, Appl. Phys. Lett., 84(4), 589 (2004)
  65. Pratap SA, Monika M, Amita C, Dhawan SK, Nanotechnology, 22(46), 465701 (2011)
  66. Singh AP, Garg P, Alam F, Singh K, Mathur RB, Tandon RP, Chandra A, Dhawan SK, Carbon, 50(10), 3868 (2012)