화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 260-269, August, 2021
Controlled production of soft magnetic hydrogel beads by biosynthesis of bacterial cellulose
E-mail:
It describes a simple process to create soft spherical ferrogels by the biosynthesis of bacterial cellulose (BC). Gluconacetobacter xylinus forms the enclosed structure of the ferrogel, which is a hydrogel containing magnetic nanoparticles (MNPs). The core ferrogel is prepared by incorporating MNPs with cellulose nanofibers (CNFs) in culture medium and a BC shell is produced by the bacteria that moves to the medium surface. Spherical BC ferrogels (SBCFs) are fabricated by dropping the core ferrogel with bacteria on a glass surface coated with poly(tetrafluoroethylene) microbeads followed by culture for seven days. The size of the SBCFs is controlled by the external magnetic force, CNF, and MNP concentrations. The CNF immobilizes MNPs and supports the spherical structure by filling the SBCF structure. Because a highly dense BC layer is formed at the surface of the medium droplets, a unique core. shell structure of SBCF is formed.
  1. Helenius G, Backdahl H, Bodin A, Nannmark U, Gatenholm P, Risberg B, J. Biomed. Mater. Res. A, 76, 431 (2006)
  2. Iguchi M, Yamanaka S, Budhiono A, J. Mater. Sci., 35(2), 261 (2000)
  3. Shin S, Kwak H, Shin D, Hyun J, Nat. Commun., 10, 1 (2019)
  4. Nakayama A, Kakugo A, Gong JP, Osada Y, Takai M, Erata T, Kawano S, Adv. Funct. Mater., 14(11), 1124 (2004)
  5. Wang S, Jiang F, Xu X, Kuang Y, Fu K, Hitz E, Hu L, Adv. Mater., 29, 170249 (2017)
  6. Wang S, Li T, Chen C, Kong W, Zhu S, Dai J, Diaz AJ, Hitz E, Solares SD, Li T, Adv. Funct. Mater., 28, 170749 (2018)
  7. Cezar CA, Kennedy SM, Mehta M, Weaver JC, Gu L, Vandenburgh H, Mooney DJ, Adv. Healthc. Mater., 3, 1869 (2014)
  8. Kim C, Kim H, Park H, Lee KY, Carbohydr. Polym., 223, 115045 (2019)
  9. Zrinyi M, Barsi L, Buki A, Polym. Gels Netw., 5, 415 (1997)
  10. Hines L, Petersen K, Lum GZ, Sitti M, Adv. Mater., 29, 160348 (2017)
  11. Lui YS, Sow WT, Tan LP, Wu Y, Lai Y, Li H, Acta Biomater., 92, 19 (2019)
  12. Monz S, Tschope A, Birringer R, Phys. Rev. E, 78, 021404 (2008)
  13. Shi W, Hu J, Fang R, Liu M, ACS Appl. Mater. Interfaces, 12, 5177 (2020)
  14. Greca LG, Lehtonen J, Tardy BL, Guo J, Rojas OJ, Mater. Horiz., 5, 408 (2018)
  15. Song J, Babayekhorasani F, Spicer PT, Biomacromolecules, 20(12), 4437 (2019)
  16. Hoshi T, Suzuki M, Ishikawa M, Endo M, Aoyagi T, Int. J. Mol. Sci., 20, 4919 (2019)
  17. Czaja W, Romanovicz D, Brown RM, Cellulose, 11, 403 (2004)
  18. Ullah H, Badshah M, Makila E, Salonen J, Shahbazi MA, Santos HA, Khan T, Cellulose, 24, 1445 (2017)
  19. Yu J, Huang TR, Lim ZH, Luo R, Pasula RR, Liao LD, Lim S, Chen CH, Adv. Healthc. Mater., 5, 2983 (2016)
  20. Hoshi T, Yamz K, Sato Y, Shida T, Aoyagi T, Heliyon, 4, e00873 (2018)
  21. Zhu H, Jia S, Wan T, Jia Y, Yang H, Li J, Yan L, Zhong C, Carbohydr. Polym., 86, 1558 (2011)
  22. Wan Y, Zhang F, Li C, Xiong G, Zhu Y, Luo H, J. Mater. Chem. A Mater., 3, 24389 (2015)
  23. Hu Y, Catchmark JM, Vogler EA, Biomacromolecules, 14(10), 3444 (2013)
  24. Beecher JF, Nat. Nanotechnol., 2(8), 466 (2007)
  25. Habibi Y, Lucia LA, Rojas OJ, Chem. Rev., 110(6), 3479 (2010)
  26. Gladman AS, Matsumoto EA, Nuzzo RG, Mahadevan L, Lewis JA, Nat. Mater., 15(4), 413 (2016)
  27. Shin S, Hyun J, ACS Appl. Mater. Interfaces, 9, 26438 (2017)
  28. Grande CJ, Torres FG, Gomez CM, Troncoso OP, Canet-Ferrer J, Martinez-Pastor J, Polym. Polym. Compos., 16, 181 (2008)
  29. Foresti D, Kroll KT, Amissah R, Sillani F, Homan KA, Poulikakos D, Lewis JA, Sci. Adv., 4, eaat16 (2018)
  30. Kim DY, Lee JG, Joshi BN, Latthe SS, Al-Deyab SS, Yoon SS, J. Mater. Chem. A Mater., 3, 3975 (2015)
  31. Morita K, Gonzales J, Sakaue H, Coatings, 8, 426 (2018)
  32. Lee SH, Nguyen XH, Ko HS, J. Mech. Sci. Technol., 26, 1403 (2012)
  33. Tolman RC, J. Chem. Phys., 17, 333 (1949)