화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.100, 372-382, August, 2021
Flexible and patterned-free Ni/NiO-based temperature device on cylindrical PET fabricated by RF magnetron sputtering: Bending and washing endurance tests
E-mail:
Flexible Resistive Temperature Detectors (RTDs) based on metal thin film have broad application prospects in smart clothes, however, they are constructed with patterned metal films using complicated manufacturing processes. Herein, we report a simple radio frequency (RF) magnetron sputtering method to fabricate light-weight, inexpensive and flexible temperature sensors (TS), whose sensitive materials act as electrode itself composed of Ni, NiO and Ni/NiO bilayer thin films. The Ni/NiO bilayer TS could be bent in different radius with resistance change below 5% signifying high flexibility. Fabricated Ni/NiO bilayer TS exhibited superior sensing performance with temperature coefficient of resistance (TCR) of 3.8 x 10-3 °C-1 compared to 3.2 x10-3 °C-1 and 3.1 x10-3 °C-1 for Ni and NiO thin films respectively. It showed a linear response with R2-value of 0.9852. The Ni/NiO bilayer TS showed TCR of 1.0 x 10-4 °C-1 even after 16,000 repetitive mechanical bends. Ni/NiO temperature sensor maintains high TCR towards exposure to different chemical solutions (acid, alkaline, detergents). The easy-fabrication process with good surface condition, together with the demonstrated results, suggest Ni/NiO is a promising candidate for flexible RTD device.
  1. Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T, Proc. Natl. Acad. Sci. U. S. A., 101(27), 9966 (2004)
  2. Roberts ME, Sokolov AN, Bao Z, J. Mater. Chem., 19(21), 3351 (2009)
  3. Gong X, Zhang L, Huang Y, Wang S, Pan G, Li L, RSC Adv., 10(37), 22222 (2020)
  4. Chen M, Zhu G, Zhang F, Tang WL, Jianping S, Yang JQ, Zhu LY, J. Adv. Res., 26, 53 (2020)
  5. Shafiq Y, Henricks J, Ambulo CP, Ware TH, Georgakopoulos SV, IEEE Access, 8, 24443 (2020)
  6. Kang L, Shi Y, Zhang J, Huang C, Zhang N, He Y, Li W, Wang C, Wu X, Zhou X, Microelectron. Eng., 216, 111052 (2019)
  7. Zhang X, et al., IEEE International Conference on Electro Information Technology, Vol. 2020-July, IEEE Computer Society, pp.509 2020.
  8. Turkiewicz M, et al., Proceedings of the International Spring Seminar on Electronics Technology, Vol. 2019-May, IEEE Computer Society, 2019.
  9. Zhao J, Li H, Choi H, Cai W, Abell JA, Li X, J. Manuf. Process., 15(1), 136 (2013)
  10. Luo D, Chen Q, Liu B, Qiu Y, Polymers (Basel), 384 (2019).
  11. Park H, KimY, Jung ES, Kwon S, Micro Nano Lett., 6(11), 895 (2011)
  12. Hofmann D, Handbook of Measuring System Design, John Wiley & Sons, Ltd., Chichester, UK, 2005.
  13. Wu R, Huijsing JH, Makinwa KAA, Proceedings of Technical Papers: IEEE Asian Solid-State Circuits Conference 2011, A-SSCC 2011, pp.241 (2011).
  14. Chen S, Wang L, Zhang H, Murugesu R, Dunwell D, Carusone AC, IEEE Trans. Very Large Scale Integr. Syst., 25(9), 2552 (2017)
  15. Chou YL, Wu CW, Jhang RT, Chiang CC, Opt. Laser Technol., 115, 186 (2019)
  16. Yang G, Wen Y, IEEE Access, 8, 42519 (2020)
  17. Yang YJ, Cheng MY, Chang WY, Tsao LC, YAng SA, Shih WP, Chang FY, Chang SH, Fan KC, Sens. Actuators A-Phys., 143(1), 143 (2008)
  18. Liu Q, Li S, Chen H, Li J, Fan Z, Appl. Phys. Express, 8(4), 046701 (2015)
  19. Dan L, Elias AL, Adv. Healthcare Mater., 9(16) (2020)
  20. Neella N, Gaddam V, Nayak MM, Dinesh NS, Rajanna K, Sens. Actuators A-Phys., 268, 173 (2017)
  21. Turkani VS, et al., Proceedings of IEEE Sensors, Vol. 2018-October, Institute of Electrical and Electronics Engineers Inc., 2018.
  22. Ali S, Hassan A, Bae J, Lee CH, Kim J, Langmuir, 32(44), 11432 (2016)
  23. Sahatiya P, Puttapati SK, Srikanth VVSS, Badhulika S, FlexiblePrintedElectron., 1(2), 025006 (2016)
  24. Trung TQ, Ramasundaram S, Hwang BU, Lee NE, Adv. Mater., 28(3), 502 (2016)
  25. Trung TQ, Ramasundaram S, Hwang BU, Lee NE, Adv. Mater., 28(3), 502 (2016)
  26. Wang F, Jiang J, Sunn F, Sun L, Wang T, Liu Y, Li M, Cellulose, 27(4), 2369 (2020)
  27. Eom TH, Han JI, Sens. Actuators A-Phys., 259, 96 (2017)
  28. Eom TH, Han JI, Sens. Actuators A-Phys., 260, 198 (2017)
  29. Wang YH, Wang WH, Zhang Z, Xu L, Li P, Eur. Polym. J., 75, 36 (2016)
  30. Liu Y, Kim E, Han JI, Electron. Mater. Lett., 12(1), 186 (2016)
  31. Jeon J, Lee HBR, Bao Z, Adv. Mater., 25(6), 850 (2013)
  32. Chi EOM, Kim WS, Hur NH, Solid State Commun., 120(7-8), 307 (2001)
  33. Yan C, Wang J, Lee PS, ACS Nano, 9(2), 2130 (2015)
  34. Davaji B, Cho HD, Malakoutian M, Lee JK, Panin G, Kang TW, Lee CH, Sci. Rep., 7(1), 1 (2017)
  35. Sassi U, Parret R, Nanot S, Bruna M, Borini S, De Fazio D, Zhao Z, Lidorikis E, Koppens FHL, Ferrari AC, Colli A, Nat. Commun., 8, 1 (2017)
  36. Keraudy J, Molleja JG, Ferrec A, Corraze B, Richard-Plouet M, Goullet A, Jouan PY, Appl. Surf. Sci., 357, 838 (2015)
  37. Wu R, Ma L, Hou C, Meng Z, Guo W, Yu W, Yu R, Hu F, Liu XY, Small, 15(31) (2019)
  38. Harada S, Kanao K, Yamamoto Y, Arie T, Akita S, Takei K, (2014).
  39. Sibinski M, Jakubowska M, Sloma M, Sensors, 10(9), 7934 (2010)
  40. Moser Y, Gijs MAM, J. Microelectromech. Syst., 16(6), 1349 (2007)
  41. Zhang Y, Cui Y, IEEE Trans. Electron Devices, 66, 3129 (2019)
  42. Kanao K, Harada S, Yamamoto Y, Honda W, Arie T, Akita S, Takei K, RSC Adv., 5(38), 30170 (2015)
  43. Hilal AM, Han BJI, IEEE Sens. J., 1 (2020).
  44. Rahman T, Cheng CY, Karagoz B, Renn M, Schrandt M, Gellman A, Panat R (2019).
  45. Shin J, Jeong B, Kim J, Nam VB, Yoon Y, Jung J. Hong S, Lee H, Eom H, Yeo J, Choi J, Lee DK, Ko SH, Adv. Mater., 32(2), 190552 (2020)