화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.4, 533-540, July, 2021
볼밀링으로 제조된 CNT-Graphene 하이브리드 나노 입자의 특성 및 나노 입자가 코팅된 PET 필름의 표면저항
Characteristics of Ball Milled CNT-Graphene Hybrid Nanoparticle and the Sheet Resistivity of PET Film Coated with Nanoparticles
E-mail:
초록
본 연구에서는 전도성 필름용 코팅제로서 탄소나노튜브(carbon nanotube, CNT)와 그래핀(graphene)을 하이브리드화한 CNT-그래핀 하이브리드 나노입자를 ball과 나노입자의 함량비와 밀링 시간에 따라 제조하였고 이를 용매에 분산 및 필름에 코팅한 후 코팅층의 특성을 분석하였다. CNT와 그래핀의 함량비를 1:1로 하고 ball과 나노입자의 함량비를 15:1로 하며 밀링 시간은 3-5시간 진행하였을 때 CNT-그래핀 하이브리드 나노입자의 최적의 평균입자 크기가 얻어졌다. 그래핀만 사용한 경우 분산 용액 내의 평균입자크기는 0.5-1.7 .m이고 전도성 필름을 제조한 후의 표면저항 값은 109-1010 Ω / sq이 얻어졌다. CNT-그래핀 하이브리드 나노입자를 이용한 분산 용액의 평균입자크기는 300-400 nm이고 전도성 필름을 제조한 후의 표면저항 값은 104 Ω/sq이었으며, 평균입자크기가 200 nm인 경우 105-106 Ω/sq가 얻어졌다.
In this study, as a coating agent for a conductive film, CNT-graphene hybrid nanoparticle, which is a composite of carbon nanotube (CNT) and graphene, was prepared according to the content ratio of the ball and nanoparticle and the milling time. The optimum average particle size of the CNT-graphene nanoparticle was obtained when the CNT and graphene content ratio was 1:1, the ball and nanoparticle content ratio was 15:1, and the milling time was 3 to 5 hours. When only graphene was used, the average particle size in the dispersion solution was 0.5 to 1.7 μm, and the surface resistivity of the conductive film was 109-1010 Ω/sq. The average particle size of the dispersion solution using the CNTgraphene hybrid nanoparticle was 300-400 nm, and the surface resistivity of the conductive film was 104 Ω/sq. The surface resistivity of the conductive film was increased to 105-106 Ω/sq for 200 nm of hybrid nanoparticle.
  1. Iijima S, Nature, 354, 56 (1991)
  2. Ajayan PM, Chem. Rev., 99(7), 1787 (1999)
  3. Popov VN, Mater. Sci. Eng. R-Rep., 43, 61 (2004)
  4. Frank S, Poncharal P, Wang ZL, de Heer WA, Science, 280(5370), 1744 (1998)
  5. Thess A, Lee R, Nikolaev P, Dai HJ, Petit P, Robert J, Xu CH, Lee YH, Kim SG, Rinzler AG, Colbert DT, Scuseria GE, Tomanek D, Fischer JE, Smalley RE, Science, 273(5274), 483 (1996)
  6. Hone J, Whitney M, Zettl A, Synthetic Metals, 103, 2498 (1999)
  7. Hone J, Whitney M, Piskoti C, Zettl A, Phys. Rev. B, 59, R2514 (1999)
  8. Park S, Ruoff RS, Nat. Nanotechnol., 4(4), 217 (2009)
  9. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183 (2007)
  10. Blake P, Hill EW, Castro Neto AH, Novoselov KS, Jiag D, Yang R, Booth TJ, Geim AK, Appl. Phys. Lett., 91, 0631 (2007)
  11. Lemme MC, Echtermeyer TJ, Baus M, Kurz HA, IEEE Electron Device Lett., 28, 282 (2007)
  12. Lin YM, Jenkins KA, Valdes-Garcia A, Small JP, Farmer DB, Avouris P, Nano Lett, 9, 422 (2009)
  13. Kim S, Nah J, Jo I, Shahrjerdi D, Colombo L, Yao Z, Tutuc E, Banerjee SK, Appl. Phys. Lett., 94, 062107 (2009)
  14. Schniepp HC, Li JL, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud'homme RK, Car R, Saville DA, Aksay IA, J. Phys. Chem. B, 110(17), 8535 (2006)
  15. Li XL, Zhang GY, Bai XD, Sun XM, Wang XR, Wang E, Dai HJ, Nat. Nanotechnol., 3(9), 538 (2008)
  16. Li D, Muller MB, Gilje S, Kaner RB, Wallace GG, Nat. Nanotechnol., 3(2), 101 (2008)
  17. Virojanadara C, Syvajarvi M, Yakimova R, Johansson LI, Zakharov AA, Balasubramanian T, Phys. Rev. B, 78, 245403 (2008)
  18. Virojanadara C, Yakimova R, Osiecki JR, Syvajarvi M, Johansson LI, Zakharov AA, Surf. Sci. Lett., 603, L87 (2009)
  19. Huang H, Chen W, Chen S, Wee ATS, ACS Nano, 2, 2513 (2008)
  20. Berger C, Song Z, Li X, Wu X, Brown N, Naud C, et al., Science, 312, 1191 (2006)
  21. Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, et al., Science, 324, 1312 (2009)
  22. Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim K, et al., Nature, 457, 706 (2009)
  23. Cai DY, Song M, Xu CX, Adv. Mater., 20(9), 1706 (2008)
  24. Lv R, Cruz-Silva E, Terrones M, ACS Nano, 8, 4061 (2014)
  25. Tung VC, Chen LM, Allen MI, Wassei JK, Nelson K, Kaner RB, Yang Y, Nano Lett., 9, 1949 (2009)
  26. Deng JH, Cheng GA, Zheng RT, Yu B, Li GZ, Hou XG, Zhao ML, Li DJ, Carbon, 67, 525 (2014)
  27. Kholmanov IN, Magnuson CW, Piner R, Kim JY, Aliev AE, Tan C, Kim TY, Zakhidov AA, Sberveglieri G, Baughman RH, Ruoff RS, Adv. Mater., 27(19), 3053 (2015)
  28. Li B, Cao XH, Ong HG, Cheah JW, Zhou XZ, Yin ZY, Li H, Wang JL, Boey F, Huang W, Zhang H, Adv. Mater., 22(28), 3058 (2010)
  29. Kim SH, Song W, Jung MW, Kang MA, Kim K, Chang SJ, Lee SS, Lim J, Hwang J, Myung S, An KS, Adv. Mater., 26(25), 4247 (2014)
  30. Kim YS, Kumar K, Fisher FT, Yang EH, Nanotechnology, 23, 015301 (2011)
  31. Cui XY, Lv RT, Sagar RUR, Liu C, Zhang ZJ, Electrochim. Acta, 169, 342 (2015)
  32. Cai DY, Song M, Xu CX, Adv. Mater., 20(9), 1706 (2008)
  33. Li Y, Peng Z, Larios E, Wang G, Lin J, Yan Z, Ruiz-Zepeda F, Jose-Yacaman M, Tour JM, ACS Nano, 9, 532 (2015)
  34. Odedairo T, Ma J, Gu Y, Ghen J, Zhao XS, Zhu Z, J. Mater. Chem. A, 2, 1418 (2014)
  35. Dong Y, Zhang S, Du X, Hong S, Zhao S, Chen Y, Chen X, Song H, Adv. Funct. Mater., 29, e19011 (2019)
  36. Teng C, Xie D, Wang J, Yang Z, Ren G, Zhu Y, Adv. Funct. Mater., 27, e17002 (2017)