화학공학소재연구정보센터
Polymer(Korea), Vol.45, No.4, 620-627, July, 2021
이온교환 작용기를 갖는 Poly(ether ether ketone): 제조 및 축전식 탈염 효율을 향상시키기 위한 탄소전극 바인더로서의 활용
Ion-Exchange Functional Group-Containing Poly(ether ether ketone)s: Preparation and Use as Binder in Fabrication of Carbon Electrodes to Improve Capacitive Deionization Efficiency
E-mail:,
초록
본 연구에서는 4차 암모늄염기를 갖는 poly(ether ether ketone)(PEEK)와 술폰산기를 갖는 PEEK를 제조하고, 축전식 탈염(capacitive deionization, CDI) 셀에 필요한 탄소전극의 바인더로서 사용하였다. 이온교환 고분자 바인더를 사용하여 제조한 탄소전극으로 조립된 CDI 셀은(500 ppm NaCl 수용액의 투입 속도: 20 mL/min, 흡착과 탈착: 각각 1.0 V와 0.0 V), styrene-butadiene 바인더로 제조한 탄소전극에 비하여 크게 향상된 염 흡착 능(salt adsorption capacity, SAC)과 전하효율(charge efficiency, CE)을 나타냈다(SAC: 10.1 vs 6.8 mg/g, CE: 79.8 vs 37.7%). CDI 셀의 성능이 크게 향상된 주된 이유는 흡착단계에서 하전된 탄소전극에 이온들이 선택적으로 흡착하도록 하는 이온교환 고분자 바인더 때문인 것으로 이해된다.
In order to develop polymer binder for use in the fabrication of activated carbon (AC) for capacitive deionization (CDI), we prepared quaternary ammonium group-bearing poly(ether ether ketone) (PEEK) and SO3H-bearing PEEK, and used them as binder in the preparation of AC electrodes. A CDI cell assembled using the electrodes (feed concentration: 500 ppm NaCl, flow rate: 20 mL/min, adsorption: 1.0 V, desorption: 0.0 V), exhibited greatly improved salt removal performance, compared to a cell assembled using the carbon electrodes fabricated from styrene-butadiene rubber as a binder (salt adsorption capacity: 10.1 vs 6.8 mg/g, charge efficiency: 79.8 vs 37.7%). The greatly improved cell performance was attributed to the ion-exchange binders that were well distributed throughout the AC electrodes, leading to selective ion adsorption onto the carbon electrodes during the adsorption steps.
  1. Suss ME, Porada S, Sun X, Biesheuvel PM, Yoon J, Presser V, Energy Environ. Sci., 8, 2296 (2015)
  2. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Progress Mater. Sci., 58, 1388 (2013)
  3. Biesheuvel PM, van der Wal A, J. Membr. Sci., 346, 256 (2010)
  4. Choi JH, Sep. Purif. Technol., 770, 362 (2010)
  5. Li H, Pan L, Nie C, Liu Y, Sun Z, J. Mater. Chem., 22, 15556 (2012)
  6. Alencherry T, Naveen AR, Ghosh S, Daniel J, Venkataraghavan R, Desalination, 415, 14 (2017)
  7. Oh HJ, Lee JH, Ahn HJ, Jeong Y, Kim YJ, Chi CS, Thin Solid Films, 515(1), 220 (2006)
  8. Laxman K, Myint MTZ, Bourdoucen H, Dutta J, ACS Appl. Mater. Interfaces, 6, 10113 (2014)
  9. Wang G, Pan C, Wang LP, Dong Q, Yu C, Zhao ZB, Qiu JS, Electrochim. Acta, 69, 65 (2012)
  10. Zhang L, Liu Y, Lu T, Pan LK, J. Electroanal. Chem., 804, 179 (2017)
  11. Xu P, Drewes JE, Heil D, Wang G, Water Res., 42, 2605 (2008)
  12. Liu Y, Nie C, Pan L, Xu X, Sun Z, Chua DHC, Inorg. Chem. Front., 1, 249 (2014)
  13. Li HB, Pan LK, Zhang YP, Zou LD, Sun CQ, Zhan YK, Sun Z, Chem. Phys. Lett., 485(1-3), 161 (2010)
  14. Nie CY, Pan LK, Liu Y, Li HB, Chen TQ, Lu T, Sun Z, Electrochim. Acta, 66, 106 (2012)
  15. Peng Z, Zhang D, Shi L, Yan T, J. Mater. Chem., 22, 6603 (2012)
  16. Zhang D, Wen X, Shi L, Yan T, Zhang J, Nanoscale, 4, 5440 (2012)
  17. Li H, Lu T, Pan L, Zhang Y, Sun Z, J. Mater. Chem., 19, 6773 (2009)
  18. Porada S, Borchardt L, Oschatz M, Bryjak M, Atchison J, et al., Energy Environ. Sci., 6, 3700 (2013)
  19. Yang J, Zou LD, Choudhury NR, Electrochim. Acta, 91, 11 (2013)
  20. Min BH, Choi JH, Jung KY, Electrochim. Acta, 270, 543 (2018)
  21. Haq OU, Choi DS, Choi JH, Lee YS, J. Ind. Eng. Chem., 83, 136 (2020)
  22. Park BH, Choi JH, Electrochim. Acta, 55(8), 2888 (2010)
  23. Park BH, Kim YJ, Park JS, Choi J, J. Ind. Eng. Chem., 17(4), 717 (2011)
  24. Asquith BM, Meier-Haack J, Ladewig BP, Chem. Eng. Res. Des., 104, 81 (2015)
  25. Jasti A, Prakash S, Shahi VK, J. Membr. Sci., 428, 470 (2013)
  26. Yee RSL, Zhang K, Ladewig BP, Membranes, 3, 182 (2013)
  27. Yasin AS, Obaid M, Mohamed IM, Yousef A, Barakat NA, Rsc. Adv., 7, 4616 (2017)
  28. ul Haq O, Choi JH, Lee YS, React. Funct. Polym., 132, 36 (2018)