Polymer(Korea), Vol.45, No.4, 628-632, July, 2021
열유도 상분리에 의한 폴리디페닐아세틸렌 유도체의 급격한 형광증대
Critical Fluorescence Enhancement of a Polydiphenylacetylene Derivative through Thermally Induced Phase Separation
E-mail:
초록
열유도 상분리에 따른 폴리디페닐아세틸렌 유도체인 poly[1-phenyl-2-(p-trimethysilyl)phenylacetylene](PTMSDPA)의 상변화와 형광특성을 조사하였다. 폴리머와 비슷한 용해도상수를 가지는 용매들로부터 1 ,4 -다이옥산이 theta solvent 로 선정되었고, cloud-point법을 통해 PTMSDPA/1,4 -다이옥산(1,4-dioxane) 용액의 phase diagram이 도출되었다. Theta condition으로 농도 0.88×10-2 M, 온도 51.6 oC에서 임계점이 나타났다. 냉각과정에서 임계점 부근에서 급격한 형광증대현상이 나타났으며, 이는 비방사성 형광 감쇠를 초래하는 폴리머 사슬 내의 충돌소광 및 진동완화가 폴리머와 용매사이의 급작스러운 상분리에 의해 억제되었기 때문이다. 본 연구는 형광공액고분자에 열유도 상분리법을 적용하여 초고형광성 나노입자 및 다공막을 제조할 수 있는 잠정적인 방법을 제시하고 있다.
Phase change and fluorescence properties of the polydiphenylacetylene derivative, poly[1-phenyl-2-(ptrimethysilyl) phenylacetylene] (PTMSDPA), were investigated according to the thermally induced phase separation (TIPS) method. 1,4-dioxane was selected as the theta solvent from solvents having solubility parameters similar to that of the polymer, and the phase diagram of the solution of PTMSDPA/1,4-dioxane was derived using the cloud-point method. A critical point appeared at a concentration of 0.88×10-2 M and a temperature of 51.6 oC as the theta condition. During the cooling process, a significant fluorescence enhancement occurred near the critical point, because collision quenching and vibration relaxation in the polymer chain, which causes non-radiative emission decay, are restrained by the abrupt phase separation between the polymer and the solvent. This study provides a tentative method for producing highly fluorescent nanoparticles and microporous membranes by applying TIPS to fluorescent conjugated polymers.
Keywords:thermally induced phase separation;polydiphenylacetylene;phase diagram;theta solvent;fluorescence emission
- Tsuchihara K, Masuda T, Higashimura T, J. Am. Chem. Soc., 113, 8548 (1991)
- Tsuchihara K, Masuda T, Higashimura T, Macromolecules, 25, 5816 (1992)
- Lee WE, Kim JW, Oh CJ, Sakaguchi T, Fujiki M, Kwak G, Angew. Chem.-Int. Edit., 49, 1406 (2000)
- Kwak G, Lee WE, Kim WH, Lee H, Chem. Commun., 16, 2112 (2009)
- Lee WE, Lee CL, Sakaguchi T, Fujiki M, Kwak G, Macromolecules, 44(3), 432 (2011)
- Lee WE, Lee CL, Sakaguchi T, Fujiki M, Kwak G, Macromolecules, 444, 432 (2011)
- Lee WE, Jin YJ, Park LS, Kwak G, Adv. Mater., 24(41), 5604 (2012)
- Kim BS, Jin YJ, Lee WE, Byun DJ, Yu R, Park SJ, Kim H, Song KH, Jang SY, Kwak G, Adv. Opt. Mater., 3, 78 (2015)
- Lee WE, Oh CJ, Kang IK, Kwak G, Macromol. Chem. Phys., 211, 1900 (2010)
- Jin YJ, Lee WE, Lee CL, Kwak G, Soft Matter, 12, 4443 (2016)
- van de Witte P, Dijkstra PJ, van den Berg JWA, Feijen J, J. Membr. Sci., 771, 1 (1996)
- Han DC, Jin YJ, Lee JH, Kim BS, Kim HJ, Song KH, Kwak G, Macromol. Chem. Phys., 215, 1068 (2014)
- Hong Y, Lam JWY, Tang BZ, Chem. Soc. Rev., 40, 5361 (2011)