화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.8, 1727-1732, August, 2021
Esterification of free fatty acids in a rotor-stator spinning disc reactor
E-mail:
Fatty acid methyl esters (FAMEs) were produced by the esterification of free fatty acids (FFA) with methanol, and sulfuric acid as the catalyst in a rotor-stator spinning disc reactor (RSSDR). The RSSDR, which shows excellent mixing efficiency and fast phase separation, was used as a novel continuous-flow esterification reactor. The influence of the variables (e.g., rotational speed, volume flow rate, rotor-stator distance, methanol-FFA molar ratio, catalyst dosage, and temperature) on esterification conversion (η) and productivity of FAMEs (PFAME) were investigated. It was found that the experimental parameters have a great impact on the η and PFAME in the RSSDR system, due to the effect of micromixing intensity and residence time distribution. Furthermore, to compare with other traditional esterification reactors, the values of η, PFAME, and PFAME per unit reactor volume (PFAME/VR) in the RSSDR were also employed to assess the performance for the production of FAMEs. It shows that the maximum values of PFAME, and PFAME/VR attained were 0.14mol/min and 3.06 X 10-2 mol/(mL min), respectively. Therefore, the RSSDR is proven to be an effective esterification reactor with high esterification conversion in comparison to conventional esterification reactors.
  1. Li ZH, Lin PH, Wu JCS, Huang YT, Lin KS, Wu KCW, Chem. Eng. J., 234, 9 (2013)
  2. Moazeni F, Chen YC, Zhang GS, J. Clean Prod., 216, 117 (2019)
  3. Sanchez-Cantu M, Perez-Diaz LM, Morales-Tellez M, Martinez-Santamaria I, Hilario-Martinez JC, Sandoval-Ramirez J, Fuel, 189, 436 (2017)
  4. Tang ZE, Lim S, Pang YL, Ong HC, Lee KT, Renew. Sust. Energ. Rev., 92, 235 (2018)
  5. Sendzikiene E, Makareviciene V, Janulis P, Renew. Energy, 31(15), 2505 (2006)
  6. Zhang L, Xian M, He YC, Li LZ, Yang JM, Yu ST, Xu X, Bioresour. Technol., 100(19), 4368 (2009)
  7. Mata TM, Pinto F, Caetano N, Martins AA, J. Clean Prod., 184, 481 (2018)
  8. dos Santos LK, Hatanaka RR, de Oliveira JE, Flumignan DL, Renew. Energy, 130, 633 (2019)
  9. Cavalcanti EDC, Aguieiras ECG, da Silva PR, Duarte JG, Cipolatti EP, Fernandez-Lafuente R, da Silva JAC, Freire DMG, Fuel, 215, 705 (2018)
  10. Boffito DC, Pirola C, Galli F, Di Michele A, Bianchi CL, Fuel, 108, 612 (2013)
  11. Talebian-Kiakalaieh A, Amin NAS, Mazaheri H, Appl. Energy, 104, 683 (2013)
  12. Souza RD, Vats T, Chattree A, Siril PF, Catal. Lett., 148(9), 2848 (2018)
  13. Chen YH, Wang LC, Tsai CH, Shang NC, Ind. Eng. Chem. Res., 49(9), 4117 (2010)
  14. Ni J, Meunier FC, Appl. Catal. A: Gen., 333(1), 122 (2007)
  15. Canakci M, Van Gerpen J, T. Asae, 44, 1729 (2001)
  16. Lucena IL, Silva GF, Fernandes FAN, Ind. Eng. Chem. Res., 47(18), 6885 (2008)
  17. Marchetti JM, Errazu AF, Biomass. Bioenerg., 32, 892 (2008)
  18. Aranda DAG, Santos RTP, Tapanes NCO, Ramos ALD, Antunes OAC, Catal. Lett., 122(1-2), 20 (2008)
  19. Wen ZZ, Yu XH, Tu ST, Yan JY, Dahlquist E, Bioresour. Technol., 100(12), 3054 (2009)
  20. Deshmane VG, Gogate PR, Pandit AB, Ind. Eng. Chem. Res., 48(17), 7923 (2009)
  21. Choedkiatsakul I, Ngaosuwan K, Assabumrungrat S, Tabasso S, Cravotto G, Biomass Bioenerg., 77, 186 (2015)
  22. Stacy CJ, Melick CA, Caimcross RA, Fuel. Process. Technol., 124, 70 (2014)
  23. Meeuwse M, van der Schaaf J, Kuster BFM, Schouten JC, Chem. Eng. Sci., 65(1), 466 (2010)
  24. Wang YB, Li J, Jin Y, Chen M, Ma R, Chem. Eng. Process., 149, 107834 (2020)
  25. van Kouwen ER, Winkenwerder W, Brentzel Z, Joyce B, Pagano T, Jovic B, Bargeman G, van der Schaaf J, Chem. Eng. Process., 160, 108303 (2021)
  26. Julia K, Hinrichsen O, Chem. Eng. Process., 136, 152 (2019)
  27. Visscher F, van der Schaaf J, de Croon MHJM, Schouten JC, Chem. Eng. J., 185, 267 (2012)
  28. Wang YB, Li J, Jin Y, Luo JH, Cao Y, Chen M, Sep. Purif. Technol., 207, 158 (2018)
  29. Mendoza PG, Weusten SJC, de Groot MT, Keurentjes JTF, Schouten JC, van der Schaaf J, Int. J. Heat. Mass. Tran., 104, 650 (2017)
  30. Meeuwse M, Hamming E, van der Schaaf J, Schouten JC, Chem. Eng. Process., 50(10), 1095 (2011)
  31. Lucena IL, Saboya RMA, Oliveira JFG, Rodrigues ML, Torres AEB, Cavalcante CL, Parente EJS, Silva GF, Fernandes FAN, Fuel, 90(2), 902 (2011)
  32. Wang YB, Li J, Jin Y, Chen M, Cao Y, Luo JH, Chinese J. Chem. Eng., 27, 2643 (2019)
  33. Wang YB, Li J, Jin Y, Luo JH, Chen M, Yan C, Chem. Eng. J., 362, 357 (2019)
  34. Wang YB, Chen M, Jin Y, Ouguang Y, Li J, J. Taiwan Inst. Chem. Eng., 115, 20 (2020)
  35. Qiu Z, Petera J, Weatherley LR, Chem. Eng. J., 210, 597 (2012)
  36. Chaudhuri A, Kuijpers KPL, Hendrix RBJ, Shivaprasd P, Hacking JA, Emanuelsson EAC, Noel T, van der Schaaf J, Chem. Eng. J., 400, 15 (2020)
  37. Berrios M, Skelton RL, Chem. Eng. J., 144(3), 459 (2008)
  38. Boffito DC, Galli F, Pirola C, Bianchi CL, Patience GS, Ultrason. Sonochem., 21, 1969 (2014)
  39. Photaworn S, Tongurai C, Kungsanunt S, Chem. Eng. Process., 118, 1 (2017)
  40. Yang HJ, Chu GW, Zhang JW, Shen ZG, Chen JF, Ind. Eng. Chem. Res., 44(20), 7730 (2005)
  41. Lopes JP, Cardoso SSS, Rodrigues AE, Chem. Eng. J., 176-177, 3 (2011)
  42. Yang K, Chu GW, Shao L, Luo Y, Chen JF, Chem. Eng. J., 153(1-3), 222 (2009)
  43. Haseidl F, Pottbacker J, Hinrichsen O, Chem. Eng. Process., 104, 181 (2016)
  44. Chen YH, Huang YH, Lin RH, Shang NC, Bioresour. Technol., 101(2), 668 (2010)
  45. Boulange-Petermann L, Gabet C, Baroux B, Colloid J., 272, 56 (2006)
  46. Yunus NM, Abidin SZ, Yee CS, Energy Sources Part A-Recovery Util. Environ. Eff., 40(21), 2518 (2018)