화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.7, 386-391, July, 2021
Harvesting of Oleaginous Microalgae Chlorella sp. by CaCO3 Mineralization
E-mail:,
The formation of CaCO3 in microalgal culture is investigated and applied for effective separation of microalgae. The presence of several cationic ions in the culture medium mediates the formation of 3 types of mineral precipitates depending on the concentration of mineral precursors, Ca2+ and CO3 2-, amorphous nano-flakes, rhombohedral calcites, and spherical vaterites. While amorphous phased precipitates are formed for all concentrations of mineral precursor, only calcites are formed for 30 mM solutions of mineral precursor, and mixtures of calcites and vaterites are formed for 50 and 100 mM solutions of mineral precursor. The harvesting efficiency is also dependent on the concentration of the mineral precursor: from 90 % for 10 mM to 99 % for 100 mM after 60 mins’ of gravitational sedimentation. The formation of nano-flakes on the surface of microalgal cells induces the flocculation of microalgae by breaking the stable dispersion. The negatively charged surface of the microalgal cell is compatible not only with nano-flake attachment but also with the growth of calcitic crystals in which microalgal cells are embedded.
  1. Chisti Y, Biotechnol. Adv., 25, 294 (2007)
  2. Mata TM, Martins AA, Caetano NS, Renew. Sust. Energ. Rev., 14, 217 (2010)
  3. Lam MK, Lee KT, Biotechnol. Adv., 30, 673 (2012)
  4. Milledge J, Heaven S, Rev. Environ. Sci. Biotechnol., 12, 165 (2013)
  5. Bosma R, Van Spronsen WA, Tramper J, Wijffels RH, J. Appl. Phycol., 15, 143 (2003)
  6. Gao SS, Yang JX, Tian JY, Ma F, Tu G, Du MA, J. Hazard. Mater., 177(1-3), 336 (2010)
  7. Kim J, Ryu BG, Kim K, Kim BK, Han JI, Yang JW, Bioresour. Technol., 123, 164 (2012)
  8. Zhang XZ, Hu Q, Sommerfeld M, Puruhito E, Chen YS, Bioresour. Technol., 101(14), 5297 (2010)
  9. Udom I, Zaribaf BH, Halfhide T, Gillie B, Dalrymple O, Zhang Q, Ergas SJ, Bioresour. Technol., 139, 101 (2013)
  10. Vandamme D, Foubert I, Muylaert K, Trends Biotechnol., 31, 233 (2013)
  11. Lee K, Lee SY, Na JG, Jeon SG, Praveenkumar R, Kim DM, Chang WS, Oh YK, Bioresour. Technol., 149, 575 (2013)
  12. Lim JK, Chieh DCJ, Jalak SA, Toh PY, Yasin NHM, Ng BW, Ahmad AL, Small., 8, 1683 (2012)
  13. LACKNER KS, WENDY CH, BUTT DP, JOYCE EL, SHARP DH, Energy, 20(11), 1153 (1995)
  14. Zevenhoven R, Eloneva S, Teir S, Catal. Today, 115(1-4), 73 (2006)
  15. Dittrich M, Obst M, Ambio, 33, 559 (2004)
  16. Heath CR, Leadbeater BCS, Callow ME, J. Appl. Phycol., 7, 367 (1995)
  17. Santomauro G, Baier J, Huang W, Pezold S, Bill J, J. Biomater. and Nanobiotechnology, 3, 413 (2012).
  18. Falini G, Albeck S, Weiner S, Addadi L, Science, 271(5245), 67 (1996)
  19. Mann S, Sparks NHC, Board RG, Adv. Microb. Physiol., 31, 125 (1990)
  20. Borowitzka MA, Larkum AWD, CRC Crit. Rev. Plant Sci., 6, 1 (1987)
  21. Seo JY, Praveenkukmar R, Kim B, Seo JC, Park JY, Na JG, Jeon SG, Park SB, Lee K, Oh YK, Green Chem., 18, 3981 (2016)
  22. Dunlop JWC, Weinkamer R, Fratzl P, Mater. Today, 14, 70 (2011)
  23. Meldrum FC, Colfen H, Chem. Rev., 108(11), 4332 (2008)
  24. Nudelman F, Chen HH, Goldberg HA, Weiner S, Addadi L, Faraday Discuss., 136, 9 (2007)
  25. Kim YY, Ganesan K, Yang P, Kulak AN, et al., Nat. Mater., 10, 890 (2011)
  26. Lee K, Lee SY, Praveenkumar R, Kim B, Seo JY, Jeon SG, Na JG, Park JY, Kim DM, Oh YK, Bioresour. Technol., 167, 284 (2014)
  27. Lee K, Na JG, Seo JY, Shim TS, Kim B, Praveenkukmar R, Park JY, Oh YK, Jeon SG, ACS Appl. Mater. Interfaces., 7, 18336 (2015)
  28. Kim M, Choi MG, Ra HW, Park SB, Kim YJ, Lee K, Materials, 11, 296 (2018)