화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.101, 66-77, September, 2021
Simultaneous production of lactate and formate from glycerol and carbonates over supported Pt catalysts
E-mail:
Glycerol and carbonates (used as CO2 sources) were simultaneously converted to carboxylic acid salts under mild hydrothermal media over supported Pt catalysts. The dehydrogenation of glycerol produced lactate (LA); at the same time, hydrogen molecules released from glycerol were effectively transferred to reduce carbonate or bicarbonate ions to formate (FA). Several reaction parameters, including temperature, time, glycerol and carbonate concentration, water amount, catalyst loading, and CO2 source were evaluated. Under the optimized reaction conditions, ~50% yield of LA from glycerol and ~26% yield of FA from potassium carbonate were achieved concomitantly over Pt/γ-Al2O3 catalyst. Importantly, this was done without using external H2 or additional strong base. The textural, structural, and chemical properties of the catalysts were evaluated using N2 adsorption.desorption, powder X-ray diffractometry (PXRD), inductively coupled plasma-atomic emission spectrometry, scanning transmission electron microscopy (STEM), temperature programmed reduction, and temperature programmed desorption analysis. The catalyst was reused for four consecutive cycles with little variation in catalytic activity and product distribution. Used catalysts were further characterized using, PXRD, STEM, and X-ray photoelectron spectral analysis to better understand the structural and chemical changes that occurred in the recycled catalysts, and the factors governing change in the catalytic activity. A plausible reaction pathway was proposed based on the catalytic results and the product distribution data obtained.
  1. Alvarez A, Bansode A, Urakawa A, Bavykina AV, Wezendonk TA, Makkee M, Gascon J, Kapteijn F, Chem. Rev., 117(14), 9804 (2017)
  2. Gunasekar GH, Park K, Jung KD, Yoon S, Inorg. Chem. Front., 3, 882 (2016)
  3. Sun R, Liao Y, Bai ST, Zheng M, Zhou C, Zhang T, Sels BF, Energy Environ. Sci., 14, 1247 (2021)
  4. Artz J, Muller TE, Thenert K, Kleinekorte J, Meys R, Sternberg A, Bardow A, Leitner W, Chem. Rev., 118(2), 434 (2018)
  5. Jessop PG, Ikariya T, Noyori R, Chem. Rev., 95(2), 259 (1995)
  6. Zhao Y, Wang T, Wang Y, Hao R, Wang H, Han Y, J. Ind. Eng. Chem., 77, 291 (2019)
  7. Reutemann W, Kieczka H, Formic acid, Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2011.
  8. Patel P, Nandi S, Marud MS, Kureshy RI, Khan NH, J. CO₂ Util., 25, 310 (2018)
  9. Fang X, Chen C, Jia H, Li Y, Liu J, Wang Y, Song Y, Du T, Liu L, J. Ind. Eng. Chem., 95, 16 (2021)
  10. Grasemann M, Laurenczy G, Energy Environ. Sci., 5, 8171 (2012)
  11. Rio JID, Perez E, Leon D, Martin A, Bermejo MD, J. Ind. Eng. Chem., 97, 539 (2021)
  12. Cortright RD, Davda RR, Dumesic JA, Nature, 418, 964 (2002)
  13. Huber GW, Iborra S, Corma A, Chem. Rev., 106(9), 4044 (2006)
  14. Valekar AH, Cho KH, Chitale SK, Hong DY, Cha GY, Lee UH, Hwang DW, Serre C, Chang JS, Hwang YK, Green Chem., 18, 4542 (2016)
  15. Valekar AH, Lee M, Yoon JW, Kwak J, Hong DY, Oh KR, Cha GY, Kwon YU, Jung J, Chang JS, Hwang YK, ACS Catal., 10, 3720 (2020)
  16. Gilkey MJ, Xu B, ACS Catal., 6, 1420 (2016)
  17. Maytum HC, Tavassoli B, Williams JMJ, Org. Lett., 9, 4387 (2007)
  18. Valekar AH, Oh KR, Hwang YK, Bull. Korean Chem. Soc, 42, 467 (2021)
  19. Razali N, Abdullah AZ, Appl. Catal. A: Gen., 543, 234 (2017)
  20. Manjunathan P, Maradur SP, Halgeri AB, Shanbhag GV, J. Mol. Catal. A-Chem., 396, 47 (2015)
  21. Manjunathan P, Ravishankar R, Shanbhag GV, ChemCatChem, 8, 631 (2016)
  22. Tang Z, Liu P, Cao H, Bals S, Heeres HJ, Pescarmona PP, ACS Catal., 9, 9953 (2019)
  23. Tang Z, Cao H, Tao Y, Heeres HJ, Pescarmona PP, Appl. Catal. B: Environ., 263, 118273 (2020)
  24. Chauvier C, Cantat T, ACS Catal., 7, 2107 (2017)
  25. Kovacs G, Schubert G, Joo F, Papai I, Catal. Today, 115(1-4), 53 (2006)
  26. Stalder CJ, Chao S, Summers DP, Wrighton MS, J. Am. Chem. Soc., 105, 6318 (1983)
  27. Kim EH, Choi YH, Lee MH, Kim J, Kim HB, Kim KY, Ra EC, Lee JH, Lee JS, J. Catal., 396, 395 (2021)
  28. Shen Z, Zhang Y, Jin F, Green Chem., 13, 820 (2011)
  29. Shen Z, Zhang Y, Jin F, RSC Adv., 2, 797 (2012)
  30. Wu B, Gao Y, Jin FM, Cao JL, Du YX, Zhang YL, Catal. Today, 148(3-4), 405 (2009)
  31. Jin F, Gao Y, Jin Y, Zhang Y, Cao J, Wei Z, Smith RL, Energy Environ. Sci., 4, 881 (2011)
  32. Heltzel JM, Finn M, Ainembabazi D, Wang K, Voutchkova-Kostal AM, Chem. Commun., 54, 6184 (2018)
  33. Ainembabazi D, Wang K, Finn M, Ridenour J, Voutchkova-Kostal A, Green Chem., 22, 6093 (2020)
  34. Cheong YJ, Sung K, Park S, Jung J, Jang HY, ACS Sustainable Chem. Eng., 8, 6972 (2020)
  35. Su J, Yang L, Yang X, Lu M, Luo B, Lin H, ACS Sustainable Chem. Eng., 3, 195 (2015)
  36. Oh KR, Valerkar AH, Cha GY, Kim Y, Lee SK, Sivan SE, Upare PP, Lee MJ, Kwon YU, Hwang YK, Chem. Mater., 32, 10084 (2020)
  37. Kon K, Siddiki SMAH, Shimizu KI, J. Catal., 304, 63 (2013)
  38. Siddiki SMAH, Touchy AS, Kon K, Toyao T, Shimizu K, ChemCatChem, 9, 2816 (2017)
  39. Jin X, Roy D, Thapa PS, Subramaniam B, Chaudhari RV, ACS Sustainable Chem. Eng., 1, 1453 (2013)
  40. Arcanjo MRA, Silva IJ, Rodriguez-Castellon E, Infantes-Molina A, Vieira RS, Catal. Today, 279, 317 (2017)
  41. Bruno AM, Chagas CA, Souza MMVM, Manfro RL, Renew. Energy, 118, 160 (2018)
  42. Shafaghat H, Rezaei PS, Wan Daud WMA, J. Taiwan Inst. Chem. E, 65, 91 (2016)
  43. Wang F, Xu L, Sun C, Yu L, Xu Q, Appl. Organometal. Chem., 32, 4505 (2018)
  44. Al-Alawi RA, Laxman K, Dastgir S, Dutta J, Appl. Surf. Sci., 377, 200 (2016)
  45. Jiang N, Sunb H, Ren D, Pang Q, Jin F, Huo Z, J. CO₂ Util., 20, 218 (2017)
  46. Ramirez-Lopez CA, Ochoa-Gomez JR, Fernandez-Santos M, Gomez-Jimenez-Aberasturi O, Aonso-Vicario A, Torrecilla-Soria J, Ind. Eng. Chem. Res., 49(14), 6270 (2010)
  47. Wang YQ, Wang FW, Li CJ, Jin FM, Int. J. Hydrog. Energy, 41(21), 9128 (2016)
  48. Wang YD, Tao ZC, Wu BS, Xu J, Huo CF, Li K, Chen HM, Yang Y, Li YW, J. Catal., 322, 1 (2015)
  49. Li P, Mi W, Su Q, Luo C, Fuel Cells, 14, 56 (2014)
  50. Matam SK, Otal EH, Aguirre MH, Winkler A, Ulrich A, Rentsch D, Weidenkaff A, Ferri D, Catal. Today, 184(1), 237 (2012)
  51. Cheng H, Lin W, Li X, Zhang C, Zhao F, Catalysts, 4, 276 (2014)
  52. Copeland JR, Santillan IA, Schimming SM, Ewbank JL, Sievers C, J. Phys. Chem. C, 117, 21413 (2013)
  53. Marques FL, Oliveira AC, Mendes J, Rodriguez-Castellon E, Cavalcante CL, Vieira RS, Fuel Process. Technol., 138, 228 (2015)
  54. Legarra M, Blitz A, Czegeny Z, Antal MJ, Ind. Eng. Chem. Res., 52, 13241 (2013)
  55. Shen Z, Jin F, Zhang Y, Wu B, Kishita A, Tohji K, Kishida H, Ind. Eng. Chem. Res., 2, 8920 (2009)
  56. Maris EP, Davis RJ, J. Catal., 249(2), 328 (2007)
  57. Ravenelle RM, Diallo FZ, Crittenden JC, Sievers C, ChemCatChem, 4, 492 (2011)
  58. Luo N, Fu X, Cao F, Xiao T, Edwards PP, Fuel, 87, 2383 (2008)
  59. Jongerius AL, Copeland JR, Foo GS, Hofmann JP, Bruijnincx PCA, Sievers C, Weckhuysen BM, ACS Catal., 3, 464 (2013)
  60. Shyu JZ, Otto K, Appl. Surf. Sci., 32, 246 (1988)
  61. Qin H, Qian X, Meng T, Lin Y, Ma Z, Catalysts, 5, 606 (2015)
  62. Zahaf R, Jung JW, Coker Z, Kim S, Choi TY, Lee D, Aerosol Air Qual. Res., 15, 2409 (2015)
  63. Serrano-Ruiz JC, Huber GW, Sanchez-Castillo MA, Dumesic JA, Rodriguez-Reinoso F, Sepulveda-Escribano A, J. Catal., 241(2), 378 (2006)