화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.101, 348-358, September, 2021
Stretchable graphene and carbon nanofiber capacitive touch sensors for robotic skin applications
E-mail:, , ,
Stretchable capacitive tactile sensors are crucial for the current and future soft robotic technology, particularly for designing artificial electronic skin for robots. In this study, we fabricated stretchable electronic tactile sensors by spray coating of conductive graphene nanoplatelets (GNPs) or carbon nanofibers (CNFs) with liquid natural rubber (NR) binder over stretchable nitrile rubber (NBR) sheets. CNF-based coatings showed remarkably low sheet resistance of 30 X sq-1 and much better current transmission patterns under elongation, with ~50% current transmission reduction under 50% elongation, compared to GNP-based coatings with 600 Ωsq-1 resistance and ~99% current transmission reduction under 50% elongation. Structural damages/cracks within the coatings due to repeated stretch-release cycles could be healed by a rapid convective heat annealing process, restoring to initial current. Haptic sensing properties of the fabricated flexible capacitive device based on CNFs-coated nitrile rubber were evaluated by connecting it to a printed circuit board (PCB). The device could easily sense tactile forces from tens of mN to a few N, corresponding to (10-2 -10) kPa pressure range over curvilinear surfaces or under elongation.
  1. Andrade AO, Pereira AA, Walter S, Almeida R, Loureiro R, Compagna D, Kyberd PJ, Biomed. Signal Process Control, 10, 65 (2014)
  2. Breazeal C, 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, pp.5368, 2011.
  3. Dahl T, Boulos M, Robotics, 3(1), 1 (2013)
  4. Dario P, Guglielmelli E, Laschi C, Teti G, Technol. Disabil., 10(2), 77 (1999)
  5. Cai L, Song L, Luan P, Zhang Q, Zhang N, Gao Q, Zhao D, Zhang X, Tu M, et al., Sci. Rep., 3(1), 3048 (2013)
  6. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN, Hata K, Nat. Nanotechnol., 6(5), 296 (2011)
  7. Benight SJ, Wang C, Tok JBH, Bao Z, Prog. Polym. Sci. (2013).
  8. Bauer S, Bauer-Gogonea S, Graz I, Kaltenbrunner M, Keplinger C, Schwodiauer R, Adv. Mater., 26(1), 149 (2014)
  9. Pang C, Lee GY, Kim TI, Kim SM, Kim HN, Ahn SH, Suh KY, Nat. Mater., 11(9), 795 (2012)
  10. Schmitz A, et al., IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 -Conference Proceedings, 2010.
  11. Dahiya RS, et al., ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 2010.
  12. Ramuz M, Tee BCK, Tok JBH, Bao Z, Adv. Mater. (2012).
  13. Park S, Vosguerichian M, Bao Z, Nanoscale, 5(5), 1727 (2013)
  14. Zhang N, Luan P, Zhou W, Zhang Q, Cai L, Zhang X, Zhou W, Fan Q, Yang F, Zhao D, Wang Y, Xie S, Nano Res., 7(11), 1680 (2014)
  15. Rogers JA, Someya T, Huang Y, Science (80-) (2010).
  16. Ulmen J, Cutkosky M, 2010 IEEE International Conference on Robotics and Automation, IEEE, pp.4836, 2010.
  17. Patil DS, Pawar SA, Shin JC, J. Ind. Eng. Chem., 62, 166 (2018)
  18. Wang Y, Wang Y, Wan B, Han B, Cai G, Chang R, Compos. Part A Appl. Sci. Manuf. (2018).
  19. Raghubanshi H, Dikio ED, Naidoo EB, J. Ind. Eng. Chem., 44, 23 (2016)
  20. Dickey MD, Adv. Mater., 29, 160642 (2017)
  21. Zhou J, Yu H, Xu X, Han F, Lubineau G, ACS Appl. Mater. Interfaces, 9(5), 4835 (2017)
  22. Sheng L, Teo S, Liu J, J. Med. Biol. Eng. (2016).
  23. Kenry, Yeo JC, Lim CT, Microsystems Nanoeng. (2016).
  24. Yaragalla S, Mishra R, Thomas S, Kalarikkal N, Maria HJ, Carbon-Based Nanofillers and Their Rubber Nanocomposites, Elsevier, 2019.
  25. Potts JR, Dreyer DR, Bielawski CW, Ruoff RS, Polymer, 52(1), 5 (2011)
  26. Yaragalla S, Rajendran R, AlMaadeed MA, Kalarikkal N, Thomas S, Mater. Sci. Eng. C (2019).
  27. Singu BS, Male U, Srinivasan P, Yoon KR, J. Ind. Eng. Chem., 49, 82 (2017)
  28. Yan X, Tai Z, Chen J, Xue Q, Nanoscale, 3(1), 212 (2011)
  29. Mates JE, Bayer IS, Palumbo JM, Carroll PJ, Megaridis CM, Nat. Commun. (2015).
  30. Wang X, Meng S, Tebyetekerwa M, Li Y, Pionteck J, Sun B, Qin Z, Zhu M, Compos. Part A Appl. Sci. Manuf., 105, 291 (2018)
  31. Chauhan NPS, Mozafari M, Chundawat NS, Meghwal K, Ameta R, Ameta SC, J. Ind. Eng. Chem., 36, 13 (2016)
  32. Cataldi P, Bayer IS, Bonaccorso F, Pellegrini V, Athanassiou A, Cingolani R, Adv. Electron. Mater., 1(12C), 150022 (2015)
  33. https://www.analog.com/en/products/ad7147.html#product-overview.
  34. Tikhanoff V, et al., Proceedings of the 8th Workshop on Performance Metrics for Intelligent Systems, USA, p.57, 2008.
  35. Mondal S, Khastgir D, Compos. Part A Appl. Sci. Manuf. (2017).
  36. Valentini L, Biagiotti J, Kenny JM, Manchado MAL, J. Appl. Polym. Sci., 89(10), 2657 (2003)
  37. Li S, Li Z, Burnett TL, Slater TJA, Hashimoto T, Young RJ, J. Mater. Sci. (2017).
  38. Likozar B, Major Z, Appl. Surf. Sci. (2010).
  39. https://www.tss.trelleborg.com/-/media/tss-media-repository/tss_website/pdf-and-other-literature/brochures/mat_chem_comp_gb_en.pdf.
  40. Rong W, Tong KY, Hu XL, Ho SK, Disabil. Rehabil. Assist. Technol., 10(2), 149 (2015)
  41. Gent AN, Kawahara S, Zhao J, Rubber Chem. Technol. (1998).
  42. Cataldi P, Ceseracciu L, Marras S, Athanassiou A, Bayer IS, Appl. Phys. Lett., 110(12) (2017)
  43. Cataldi P, Bayer IS, Nanni G, Athanassiou A, Bonaccorso F, Pellegrini V, et al., Carbon N. Y., 109, 331 (2016)
  44. Lim CS, Rodriguez AJ, Guzman ME, Schaefer JD, Minaie B, Carbon N. Y. (2011).
  45. Schmitz A, Maiolino P, Maggiali M, Natale L, Cannata G, Metta G, IEEE Trans. Robot., 27(3), 389 (2011)
  46. Maiolino P, Maggiali M, Cannata G, Metta G, Natale L, IEEE Sens. J., 13(10), 3910 (2013)
  47. https://fineline-global.com/en/knowledge-scb.
  48. https://esd.eu/en/products/can-usb2.