화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.4, 361-370, August, 2021
탄소섬유를 활용한 구조용 배터리 연구 동향
A Review of Structural Batteries with Carbon Fibers
E-mail:
초록
탄소 섬유 강화플라스틱은 가볍지만 우수한 기계적 강도를 가지는 복합재의 한 종류이다. 가벼우면서 우수한 기계적 강도를 가지는 탄소 섬유 강화플라스틱은 산업 전반에 널리 이용되고 있으며, 최근 활발히 연구되고 있는 전기자동차 및 무인기 등의 무게 감소 핵심 대체 부품으로 연구되고 있다. 배터리를 전원으로 사용하는 운송수단 등은 외부 충격에 이차 폭발의 위험이 있기 때문에 배터리를 안전하게 보호할 수 있는 덮개가 필수적인 동시에, 무게를 줄여 주행거리를 늘려야 하는 요구조건을 만족해야 한다. 이러한 요구 조건에 부합하는 재료로 탄소섬유 강화플라스틱이 손꼽히고 있고, 배터리 보호 덮개 및 다양한 대체품으로의 활용이 연구되고 있다. 한편, 우수한 전기적 특성을 가진 탄소섬유를 배터리 구성품으로 활용하는 연구가 배터리 분야에서 진행 중이고, 이에 더 나아가 탄소 섬유가 배터리를 보호하고 배터리 전극 및 집전체 역할까지 동시에 수행하는 구조용 배터리에 대한 연구가 스웨덴과 미국을 중심으로 활발히 연구 중이다. 본 총설에서는 탄소 섬유의 역할에 따른 구조용 배터리의 분류 및 해당 배터리들에서 발생하는 문제점 등을 포괄하는 최근 연구 동향을 요약하고, 구조용 배터리에 대한 전망을 간략히 논의하고자 한다.
Carbon fiber reinforced polymer (CFRP) is one of the composite materials, which has a unique property that is lightweight but strong. The CFRPs are widely used in various industries where their unique characteristics are required. In particular, electric and unmanned aerial vehicles critically need lightweight parts and bodies with sufficient mechanical strengths. Vehicles using the battery as a power source should simultaneously meet two requirements that the battery has to be safely protected. The vehicle should be light of increasing the mileage. The CFRP has considered as the one that satisfies the requirements and is widely used as battery housing and other vehicle parts. On the other hand, in the battery area, carbon fibers are intensively tested as battery components such as electrodes and/or current collectors. Furthermore, using carbon fibers as both structure reinforcements and battery components to build a structural battery is intensively investigated in Sweden and the USA. This mini-review encompasses recent research trends that cover the classification of structural batteries in terms of functionality of carbon fibers and issues and efforts in the battery and discusses the prospect of structural batteries.
  1. Newcomb BA, Compos. Pt. A-Appl. Sci. Manuf., 91, 262 (2016)
  2. Jaber AA, Obaid AA, Advani SG, Gillespie JW, J. Electrostat., 111, 103577 (2021)
  3. Kwon DJ, Kim NSR, Jang YJ, Choi HH, Kim K, Kim G, Kong J, Nam SY, Compos. B Eng., 216, 108859 (2021)
  4. Kwon DJ, Kim JH, DeVries KL, Park JM, J. Mater. Res., 11, 62 (2021)
  5. Kim JH, Shin PS, Kwon DJ, Park JM, Compos. Sci. Technol., 201, 108480 (2021)
  6. Kwon DJ Kim NSR, Jang YJ, Yang SB, Yeum JH, Jung JH, Nam SY, Park YB, Ji W, Compos. B Eng., 215, 108767 (2021)
  7. Yuan J, Gomba LD, Callegaro AD, Reimers J, Emadi A, IEEE Access, 9, 51501 (2021)
  8. Balai Y, Stegen S, Renew. Sust. Energ. Rev., 135, 110185 (2021)
  9. Gabbar HA, Othman AM, Abdussami MR, Technol., 9(2), 1 (2021)
  10. Taniguchi A, Fujioka N, Ikoma M, Ohta A, J. Power Sources, 100(1-2), 117 (2001)
  11. Zeng X, Li M, Hady DAE, Alshitari W, Bogami ASA, Lu J, Amine K, Adv. Eng. Mater., 9, 190016 (2019)
  12. Kawkita S, Teranishi M, Ishizaka Y, Fushinobu K, 2020 19th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), July 21-23, Orlando, Florida, USA (2020).
  13. Schuh G, Bergweiler G, Fiedler F, Koltermann M, Procedia CIRP, 93, 137 (2020)
  14. Wang Z, Zhang H, Xia X, Int. J. Heat Mass Transf., 109, 958 (2017)
  15. Carlstedt D, Asp LE, Compos. B Eng., 186, 107822 (2020)
  16. Carlstedt D, Johannisson W, Zenkert D, Linde P, Asp L, Proc. 18th Eur. Conf. Compos. Mater., Athens, Greece (2018).
  17. https://www.chalmers.se/en/staff/pages/leifas.aspx.
  18. Tesla model S owner’s manual. Version 2018.48.12. Available online:https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf (2019).
  19. BMW. http://www.bmw.com (2019).
  20. Ihrner N, Johannisson W, Sieland F, Zenkert D, Johansson M, J. Mater. Chem. A, 5, 25652 (2017)
  21. Wang Z, Kaferbock M, Zhao H, Chen H, ATZ Worldwide, 123, 16 (2021)
  22. Duan J, Tang X, Dai H, Yang Y, Wu W, Wei X, Wei X, Huang Y, Electrochem. Energy Rev., 3, 1 (2020)
  23. Miao Y, Hynan P, Jouanne AV, Yokochi A, Energies, 12, 1074 (2019)
  24. Chen Y, Kang Y, Zhao Y, Wang L,Liu J, Li Y, Liang Z, He X, Xing, Li Tavajohi N, Li B, J. Energy Chem., 59, 83 (2021)
  25. Asp L, Johansson M, Lindbergh G, Xu J, Zenkert D, Funct. Compos Struct., 1, 042001 (2019)
  26. Yang Y, Yuan W, Zhang X, Ke Y, Qiu Z, Luo J, Tang Y, Wang C, Yuan Y, Huang Y, Appl. Energy, 276, 115464 (2020)
  27. Wang Y, Wang X, Xue M, Li Q, Zhang Y, Liu D, Liu J, Rao W, Chem. Eng. J., 409, 128160 (2021)
  28. Shockey DA, Ventura SC, Narang SC, Simons JW, Bourne BC, Peterson BD, Final Report, DTIC (2005).
  29. Galos J, Best AS, Mouritz AP, Mater. Des., 185, 108228 (2020)
  30. Chen J, Zhou Y, Islam MS, Cheng X, Brown SA, Han Z, Rider ZN, Wang CH, Compos. Sci. Technol., 209, 108787 (2021)
  31. Xu J, Varna J, Compos. Sci. Technol., 186, 107891 (2020)
  32. Wetzl ED, The AMPTIAC Quarterly, 8, 91 (2004).
  33. Pattarakunnan K, Galos J, Das R, Mouritz AP, Compos. Struct., 267, 113845 (2021)
  34. Galos J, Khatibi AA, Mouritz AP, Compos. Struct., 220, 677 (2019)
  35. Moyer K, Meng C, Marshall B, Assal O, Eaves J, Perez D, Karkkainen R, Roberson L, Pint CL, Energy Storage Mater., 24, 676 (2020)
  36. Arepalli S, Moloney P, MRS Bull., 40, 804 (2015)
  37. Samareh JA, Siochi EJ, Nanotechnol., 28, 372001 (2017)
  38. Ladpli P, Nardari R, Kopsaftopoulos F, Chang FK, J. Power Sources, 414, 517 (2019)
  39. Johnson R, May I, Struct. Eng., 53(8), 305 (1975)
  40. Viest IM, J. Proc., 52, 875 (1956)
  41. Wang Y, J. Struct. Eng., 124(10), 1159 (1998)
  42. Jacques E, He M. Kjell, Zenkert D, Lindberghb G, Behm M, Carbon, 59, 246 (2013)
  43. Asp E, Greenhalgh ES, Compos. Sci. Technol., 101, 41 (2014)
  44. Snyder JF, Carter RH, Wetzel ED, Chem. Mater., 19, 3793 (2007)
  45. Carlson T, Ordeus D, Wysocki M, Asp LE, Compos. Sci. Technol., 70(7), 1135 (2010)
  46. Muralidharan N, Teblum E, Westover AS, Schauben D, Itzhak A, Muallem M, Nessim GD, Pint CL, Scientific. Reports, 8, 17662 (2018)
  47. Johannisson W, Ihrner N, Zenkert D, Johansson M, Carlstedt D, Asp LE, Sieland F, Compos. Sci. Technol., 168, 81 (2018)
  48. Meng C, Muralidharan N, Teblum E, Moyer KE, Nessim GD, Pint CL, Nano Lett., 18, 7761 (2018)
  49. Wong EL, Baechle DM, Xu K, Snyder JF, Carter RH, Wetzel ED, SAMPE 2007. June 3-7, Baltimore, Maryland, U.S.A. (2007).
  50. Huang W, Wang P, Liao X, Chen Y, Borovila J, Jin T, et al., Energy Storage Mater., 33, 416 (2020)
  51. Wu ZS, Pei SF, Ren WC, Tang DM, Gao LB, Liu BL, Li F, Liu C, Cheng HM, Adv. Mater., 21(17), 1756 (2009)
  52. Diba M, Gallastegui AG, Taylor RNK, Pishbin F, Ryan MP, Shaffer MSP, Boccaccini AR, Carbon, 67, 656 (2014)
  53. Xia ZY, Wei D, Anitowska E, Bellani V, Ortolani L, Morandi V, Gazzano M, Zanelli A, Borini S, Palermo V, Carbon, 84, 254 (2015)
  54. Xia ZY, Christian M, Arbizzani C, Morandi V, Gazzano M, Quintano V, Kovtun A, Palermo V, Arobust, Nanoscale, 11, 5265 (2019)
  55. Sanchez JS, Zu J, Xia Z, Sun J, Asp LE, Palermo V, Compos. Sci. Technol., 208, 108768 (2021)
  56. Yu Y, Zhang B, Feng M, Qi G, Tian F, Feng Q, Yang J, Wagn S, Compos. Sci. Technol., 147, 62 (2017)
  57. Xu J, Johannisson W, Johansen M, Liu F, Zenkert D, Lindbergh G, Asp LE, Compos. Sci. Technol., 188, 107962 (2020)
  58. Toray Carbon Fibres America Inc., T800H Data Sheet (2019).
  59. Toray Carbon Fibres America Inc., T800S Data Sheet (2019).
  60. Ihrner N, Johannisson W, Sieland F, Zenkert D, Johansson M, J. Mater. Chem. A, 5, 25652 (2017)
  61. Johannisson W, Ihrner N, Zenkert D, Johansson M, Carlstedt D, Asp LE, Sieland F, Compos. Sci. Technol., 168, 81 (2018)
  62. Schneider LM, Ihrner N, Zenkert D, Johansson M, ACS Appl. Energy Mater., 2, 4362 (2019)
  63. Asp LE, Bouton K, Carlstedt D, Duan S, Harnden R, et al., Adv. Energy Sustain. Res., 2, 200009 (2021)
  64. Park HW, Jang MS, Choi JS, Pyo J, Kim CG, Compos. Struct., 256, 112999 (2021)
  65. Cha H, Kim J, Lee Y, Cho J, Park M, Small, 14(43), 1 (2018)
  66. Peng HJ, Huang JQ, Cheng XB, Zhang Q, Adv. Eng. Mater., 7(24), 170026 (2017)