Applied Chemistry for Engineering, Vol.32, No.4, 403-408, August, 2021
고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작
Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors
E-mail:,
초록
본 논문에서는 얇고 유연한 평면 슈퍼 커패시터(PSC)를 스크린 인쇄된 탄소 전극에 폴리아닐린(PANI)을 코팅하여 제작하였습니다. 스크린 프린팅 방법을 사용하여 유연한 폴리에틸렌 테레프탈레이트에 탄소 잉크를 코팅한 후 희석 중합 법을 사용하여 탄소 표면에 PANI 박막을 코팅하였습니다. 서로 맞물린 구조의 얇은 유연한 PANI 전극을 폴리머겔 전해질로 조립하여 평면 모양의 슈퍼 커패시터(PSC) 장치를 만들었습니다. 상기 제조된 PANI/PSC는 매우 얇고 유연 하였으며, 10 mV/s에서 409 μF/cm2의 높은 면적 정전용량을 나타내었습니다. 이 값은 500 mV/s에서 원래 값의 46%로 유지되었습니다. 유연한 PANI/PSC는 180°의 구부러진 상태와 100번째의 반복적인 피로도 테스트에서도 82% 의 높은 정전 용량 유지를 보여주었습니다.
In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 μF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.
- Beidaghi M, Gogotsi Y, Energy Environ. Sci., 7, 867 (2014)
- Hu H, Pei Z, Ye C, Energy Storage Mater., 1, 82 (2015)
- Lu T, Liu M, Zhu D, Gan L, Chen T, Adv. Mater., 30, 170548 (2018)
- Tyagi A, Tripathi KM, Gupta RK, J. Mater. Chem. A, 3, 22507 (2015)
- Kyeremateng NA, Brousse T, Pech D, Nat. Nanotechnol., 12(1), 7 (2017)
- Pech D, Brunet M, Dinh TM, Armstrong K, Gaudet J, Guay D, J. Power Sources, 230, 230 (2013)
- Zhang J, Zhang G, Zhou T, Sun S, Adv. Funct. Mater., 30, 191000 (2020)
- Liu N, Gao Y, Small, 13, 170198 (2017)
- Qi D, Liu Y, Liu Z, Zhang L, Chen X, Adv. Mater., 29, 160280 (2017)
- Aradilla D, Delaunay M, Sadki S, Gerard JM, Bidan G, J. Mater. Chem. A, 3, 19254 (2015)
- Simon P, Gogotsi Y, World Scientific, 320 (2010).
- Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP, Small, 16, 200280 (2020)
- Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S, Energy Conv. Manag., 45(9-10), 1597 (2004)
- Srinivasan R, Elaiyappillai E, Nixon EJ, Lydia IS, Johnson PM, Inorg. Chim. Acta., 502, 119393 (2020)
- Payami E, Teimuri-Mofrad R, Ahadzadeh I, Mohammadi R, Electrochim. Acta, 354, 136712 (2020)
- Du P, Dong Y, Kang H, Li J, Niu J, Liu P, J. Power Sources, 449, 227477 (2020)
- Laelabadi KG, Moradian R, Manouchehri I, ACS Appl. Energy Mater., 3, 5301 (2020)
- Yu S, Patil B, Ahn H, Fibers Polym., 21, 465 (2020)
- Iqbal MZ, Faisal MM, Ali SR, Farid S, Afzal AM, Electrochim. Acta, 346, 136039 (2020)
- Zhang T, Yue H, Gao X, Yao F, Chen H, Lu X, Wang Y, Guo X, Dalton Trans., 49, 3304 (2020)
- Awata R, Shehab M, El Tahan A, Soliman M, Ebrahim S, Electrochim. Acta, 347, 136229 (2020)
- Shen Y, Qin Z, Hu S, Yang L, Xu X, Ding L, Zhang Y, Carbon, 158, 711 (2020)
- Sun LM, Wang XH, Liu WW, Zhang K, Zou JP, Zhang Q, J. Power Sources, 315, 1 (2016)
- Chen YB, Li XM, Bi ZJ, Li GJ, He XL, Gao XD, Chem. Eng. J., 353, 499 (2018)
- Yun J, Kim D, Lee G, Ha JS, Carbon, 79, 156 (2014)
- Shen B, Lang J, Guo R, Zhang X, Yan X, ACS Appl. Mater. Interfaces, 7, 25378 (2015)
- Guo R, Chen J, Yang B, Liu L, Su L, Shen B, Yan X, Adv. Funct. Mater., 27, 170239 (2017)
- Li J, Delekta SS, Zhang P, Yang S, Lohe MR, Zhuang X, Feng X, ACS Nano, 11, 8249 (2017)
- Liu S, Xie J, Li H, Wang Y, Yang HY, Zhu T, Zhang S, Cao G, Zhao X, J. Mater. Chem. A, 2, 18125 (2014)