화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.32, No.4, 403-408, August, 2021
고성능 평면 슈퍼커패시터를 위한 얇고 유연한 폴리아닐린 전극 제작
Fabrication of a Thin and Flexible Polyaniline Electrode for High-performance Planar Supercapacitors
E-mail:,
초록
본 논문에서는 얇고 유연한 평면 슈퍼 커패시터(PSC)를 스크린 인쇄된 탄소 전극에 폴리아닐린(PANI)을 코팅하여 제작하였습니다. 스크린 프린팅 방법을 사용하여 유연한 폴리에틸렌 테레프탈레이트에 탄소 잉크를 코팅한 후 희석 중합 법을 사용하여 탄소 표면에 PANI 박막을 코팅하였습니다. 서로 맞물린 구조의 얇은 유연한 PANI 전극을 폴리머겔 전해질로 조립하여 평면 모양의 슈퍼 커패시터(PSC) 장치를 만들었습니다. 상기 제조된 PANI/PSC는 매우 얇고 유연 하였으며, 10 mV/s에서 409 μF/cm2의 높은 면적 정전용량을 나타내었습니다. 이 값은 500 mV/s에서 원래 값의 46%로 유지되었습니다. 유연한 PANI/PSC는 180°의 구부러진 상태와 100번째의 반복적인 피로도 테스트에서도 82% 의 높은 정전 용량 유지를 보여주었습니다.
In this study, a thin and flexible planar supercapacitor (PSC) was fabricated by coating polyaniline (PANI) on a screen-printed carbon electrode. Carbon ink was coated onto the flexible polyethylene terephthalate using a screen-printing method; subsequently, a thin film of PANI was coated onto the carbon surface using a dilute polymerization method. A thin flexible PANI electrode in an interdigitated structure was assembled with a polymer gel electrolyte that resulted in planar-shaped supercapacitor (PSC) devices. The as-obtained PANI/PSC was very thin and flexible, exhibiting a high areal capacitance of 409 μF/cm was obtained at a rate of 10 mV/s. This capacitance retains 46% of its original value at 500 mV/s. The flexible PANI/PSC exhibited an excellent capacitance retention of 82% even under bent states of 180° and 100 repetitive bent cycles.
  1. Beidaghi M, Gogotsi Y, Energy Environ. Sci., 7, 867 (2014)
  2. Hu H, Pei Z, Ye C, Energy Storage Mater., 1, 82 (2015)
  3. Lu T, Liu M, Zhu D, Gan L, Chen T, Adv. Mater., 30, 170548 (2018)
  4. Tyagi A, Tripathi KM, Gupta RK, J. Mater. Chem. A, 3, 22507 (2015)
  5. Kyeremateng NA, Brousse T, Pech D, Nat. Nanotechnol., 12(1), 7 (2017)
  6. Pech D, Brunet M, Dinh TM, Armstrong K, Gaudet J, Guay D, J. Power Sources, 230, 230 (2013)
  7. Zhang J, Zhang G, Zhou T, Sun S, Adv. Funct. Mater., 30, 191000 (2020)
  8. Liu N, Gao Y, Small, 13, 170198 (2017)
  9. Qi D, Liu Y, Liu Z, Zhang L, Chen X, Adv. Mater., 29, 160280 (2017)
  10. Aradilla D, Delaunay M, Sadki S, Gerard JM, Bidan G, J. Mater. Chem. A, 3, 19254 (2015)
  11. Simon P, Gogotsi Y, World Scientific, 320 (2010).
  12. Chodankar NR, Pham HD, Nanjundan AK, Fernando JFS, Jayaramulu K, Golberg D, Han YK, Dubal DP, Small, 16, 200280 (2020)
  13. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S, Energy Conv. Manag., 45(9-10), 1597 (2004)
  14. Srinivasan R, Elaiyappillai E, Nixon EJ, Lydia IS, Johnson PM, Inorg. Chim. Acta., 502, 119393 (2020)
  15. Payami E, Teimuri-Mofrad R, Ahadzadeh I, Mohammadi R, Electrochim. Acta, 354, 136712 (2020)
  16. Du P, Dong Y, Kang H, Li J, Niu J, Liu P, J. Power Sources, 449, 227477 (2020)
  17. Laelabadi KG, Moradian R, Manouchehri I, ACS Appl. Energy Mater., 3, 5301 (2020)
  18. Yu S, Patil B, Ahn H, Fibers Polym., 21, 465 (2020)
  19. Iqbal MZ, Faisal MM, Ali SR, Farid S, Afzal AM, Electrochim. Acta, 346, 136039 (2020)
  20. Zhang T, Yue H, Gao X, Yao F, Chen H, Lu X, Wang Y, Guo X, Dalton Trans., 49, 3304 (2020)
  21. Awata R, Shehab M, El Tahan A, Soliman M, Ebrahim S, Electrochim. Acta, 347, 136229 (2020)
  22. Shen Y, Qin Z, Hu S, Yang L, Xu X, Ding L, Zhang Y, Carbon, 158, 711 (2020)
  23. Sun LM, Wang XH, Liu WW, Zhang K, Zou JP, Zhang Q, J. Power Sources, 315, 1 (2016)
  24. Chen YB, Li XM, Bi ZJ, Li GJ, He XL, Gao XD, Chem. Eng. J., 353, 499 (2018)
  25. Yun J, Kim D, Lee G, Ha JS, Carbon, 79, 156 (2014)
  26. Shen B, Lang J, Guo R, Zhang X, Yan X, ACS Appl. Mater. Interfaces, 7, 25378 (2015)
  27. Guo R, Chen J, Yang B, Liu L, Su L, Shen B, Yan X, Adv. Funct. Mater., 27, 170239 (2017)
  28. Li J, Delekta SS, Zhang P, Yang S, Lohe MR, Zhuang X, Feng X, ACS Nano, 11, 8249 (2017)
  29. Liu S, Xie J, Li H, Wang Y, Yang HY, Zhu T, Zhang S, Cao G, Zhao X, J. Mater. Chem. A, 2, 18125 (2014)