화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.38, No.9, 1843-1858, September, 2021
Adsorption of heavy metal ions via apple waste low-cost adsorbent: Characterization and performance
E-mail:
This research focuses on the enhancement of the biosorption process via apple waste (a cheap adsorbent) for the treatment of heavy metals (including Cu2+, Cd2+, Zn2+ and Pb2+). The apple pomace modified by potassium permanganate (ACAPMP), apple pomace modified by sodium hydroxide (APMSH) and activated carbon apple pomace (ACAP) were synthesized as adsorbents for the removal of heavy metals. The prepared biomass adsorbents were analyzed by FTIR, BET, EDS and FE-SEM. The Box-Behnken design was applied to optimize the process. The influence of pH, the time of removal, the type of adsorbent and concentration of heavy metal on the adsorption performance were investigated by batch experiments. The results revealed that ACAP, APMS and ACAP adsorbents were able to remove approximately 95% of zinc, cadmium, lead and copper from wastewater. The ACAPMP indicated the best performance compared to other adsorbents in optimal condition. Also, the results exhibited excellent removal performance for Pb2+, Zn2+, Cu2+ and Cd2+ with maximum adsorption percent 99.72%, 99.28%, 99.18% and 96.45%, respectively. To define the best correlation, the equilibrium data for adsorption were studied by using Langmuir and Freundlich isotherm models. The FTIR, BET and EDS characterization of functional groups and morphology confirm the suitable preparation of ACAPMP, ACAP and APMSH. The adsorption results indicate that apple waste as low-cost and high surface capacity adsorbents can be used.
  1. Emsley J, Nature’s building blocks, new edition, Oxford Univ. Press, Oxford (2011).
  2. Kozin LF, Hansen SC, Mercury handbook: chemistry, applications and environmental impact, R. soc. chem., UK (2013).
  3. Ali H, Khan E, Toxicol. Environ. Chem., 100, 6 (2018)
  4. Tolcin A, U.S. Geological Survey, Mineral Commodity Summaries 2020, Independently Published (2020).
  5. Statista Research Department. World production of lead from 2006 to 2018 2019, Dec 1; Available from: https://www.statista.com/statistics/264872/world-production-of-lead-metal/ (2020).
  6. Lide DR, CRC handbook of chemistry and physics, Vol. 85, CRC press, Boca Raton (2004).
  7. Dart RC, Hurlbut KMa Boyer-Hassen LV, Medical toxicology, Lippincott Williams & Wilkins, Philadelphia (2004).
  8. Denoyer D, Clatworthy SA, Cater MA, Met. Ions Life Sci., 18, 1 (2018)
  9. Statista Research Department, Total copper mine production worldwide from 2006 to 2020 (2021).
  10. Deubzer O, Waste electrical and electronic equipment (WEEE) handbook, Elsevier, Netherlands (2019).
  11. Ohgaki M, Takeguchi Y, Okawa S, Namiki K, R. Soc. Open Sci., 6, 1 (2019)
  12. Masindi V, Muedi KL, Heavy Metals, 10, 115 (2018)
  13. WHO G, World Health Organ., 216, 303 (2011).
  14. Burakov AE, Galunin EV, Burakova IV, Kucherova AE, Agarwal S, Tkachev AG, Gupta VK, Ecotoxicol. Environ. Saf., 148, 702 (2018)
  15. Yous R, Mohellebi F, Cherifi H, Amrane A, Korean J. Chem. Eng., 35(4), 890 (2018)
  16. Fiyadh SS, AlSaadi MA, Jaafar WZB, AlOmar MK, Fayaed SS, Mohd NSB, Hin LS, El-Shafie A, J. Clean Prod., 230, 783 (2019)
  17. Chen H, Xie A, You S, IOP Conf. Ser.: Mater. Sci. Eng., 301 (2018).
  18. Liew RK, Chai C, Yek PNY, Phang XY, Chong MY, Nam WL, Su MH, Lam WH, Ma NL, Lam SS, J. Clean Prod., 208, 1436 (2019)
  19. Foong SY, Liew RK, Yang Y, Cheng YW, Yek PNY, Mahari WAW, Lee XY, Han CS, Vo DVN, Van Le Q, Chem. Eng. J., 389, 1 (2020)
  20. Marsh H, Reinoso FR, Activated carbon, Elsevier, Netherlands (2006).
  21. Zhao MH, Xu Y, Zhang CS, Rong HW, Zeng GM, Appl. Microbiol. Biotechnol., 100(15), 6509 (2016)
  22. Chand P, Pakade YB, Environ. Sci. Pollut. Res., 22, 10919 (2015)
  23. Chand P, Bafana A, Pakade YB, Int. Biodeterior. Biodegrad., 97, 60 (2015)
  24. Chand P, Bokare M, Pakade YB, Environ. Sci. Pollut. Res., 24, 10454 (2017)
  25. Heraldy E, Lestari WW, Permatasari D, Arimurti DD, J. Environ. Chem. Eng., 6, 1201 (2018)
  26. Enniya I, Rghioui L, Jourani A, Sustainable Chem. Pharm., 7, 9 (2018)
  27. Jangde V, Umathe P, Antony PS, Shinde V, Pakade Y, Int. J. Environ. Sci. Technol., 16, 6347 (2019)
  28. Cheok CY, Adzahan NM, Rahman RA, Abedin NHZ, Hussain N, Sulaiman R, Chong GH, Crit. Rev. Food Sci. Nutr., 58, 335 (2018)
  29. Sostaric TD, Petrovic MS, Pastor FT, Loncarevic DR, Petrovic JT, Milojkovic JV, Stojanovic MD, J. Mol. Liq., 259, 340 (2018)
  30. Wang HY, Gao B, Wang SS, Fang J, Xue YW, Yang K, Bioresour. Technol., 197, 356 (2015)
  31. Langmuir I, J. Am. Chem. Soc., 38, 2221 (1916)
  32. Freundlich H, Z. Phys. Chem., 57, 385 (1907)
  33. Myers RH, et al., Response surface methodology: process and product optimization using designed experiments (2016).
  34. Melnikova F, Geohagen BC, Gavin T, LoPachin RM, Anastas PT, Coish P, Herrf DW, NeuroToxicology, 79, 95 (2020)
  35. Qi C, Liu H, Deng S, Yang A, Li Z, Res. Che. Inter., 44, 2889 (2018)
  36. Czitrom V, Am. Statistician, 53, 126 (1999)
  37. Kaveeshwar AR, Ponnusamy SK, Revellame ED, Gang DD, Zappi ME, Subramaniam R, Process Saf. Environ. Prot., 114, 107 (2018)
  38. Park JH, Ok YS, Kim SH, Cho JS, Heo JS, Delaune RD, Seo DC, Chemosphere, 142, 77 (2016)
  39. Niu JJ, Wang JN, Jiang Y, Su LF, Ma J, Microporous Mesoporous Mater., 100, 1 (2007)
  40. Pavia DL, Lampman GM, Kriz GS, Vyvyan JA, Introduction to spectroscopy, Cengage Learning, Boston (2008).
  41. Karimi A, Fatehifar E, Alizadeh R, Iran. J. Chem. Eng., 10, 51 (2013)
  42. Bhongale G, Kulkarni D, Sapre V, Bull. Mater. Sci., 15, 121 (1992)
  43. Patil SA, Mahajan VC, Ghatage AK, Lotke SD, Mater. Chem. Phys., 57, 86 (1998)
  44. Pradeep A, Chandrasekaran G, Mater. Lett., 60, 371 (2006)
  45. Doke KM, Khan EM, Arabian J. Chem., 10, 252 (2017)
  46. N'Goran KPDA, Diabate D, Yao KM, Kouassi NLB, Gnonsoro UP, Kinimo KC, Trokourey, Arabian J. Geosci., 11, 498 (2018)
  47. Wang C, Wang H, J. Clean Prod., 184, 921 (2018)