화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.31, No.8, 471-479, August, 2021
금속 필러가 첨가된 Pb-B-O계 유리와 Ni-Cr 합금 와이어 간의 전기 화학적 반응과 단락 거동
Electrochemical Reaction and Short-Circuit Behavior between Lead Borate Glass Doped with Metal Filler and Ni-Cr Alloy Wire
E-mail:
The electrochemical reaction between lead borate glass frit doped with Sn metal filler and Ni-Cr wire of a J-type resistor during a term of Joule heating is investigated. The fusing behavior in which the Ni-Cr wire is melted is not observed for the control group but measured for the Sn-doped specimen under 30 V and 500 mA. The Sn-doped lead borate glass frit shows a fusing property compared with other metal-doped specimens. Meanwhile, the redox reaction significantly contributes to the fusing behavior due to the release of free electrons of the metal toward the glass. The electrons derived from the glass, which used Joule heat to reach the melting point of Ni-Cr wire, increase with increasing corrosion rate at interface of metal/glass. Finally, the confidence interval is 95 ± 1.959 %, and the adjusted regression coefficient, R in the optimal linear graph, is 0.93, reflecting 93% of the data and providing great potential for fusible resistor applications.
  1. Oakley FF, U. S. Patent, 269,668 (1952).
  2. Hinooka K, U. S. Patent, 5,153,458 (1992).
  3. Kim YJ, J Korean Inst. IIIum. Electr. Install. Eng., 24, 120 (2010).
  4. Tang GY, Yang C, Chai JC, Gong HQ, Int. J. Heat Mass Transf., 47(2), 215 (2004)
  5. Das SK, Putra N, Thiesen P, Roetzel W, J. Heat Transfer, 125, 567 (2003)
  6. Tanaka T, Ishikawa A, Kawata S, Appl. Phys. Lett., 88, 1 (2006)
  7. Reinhard DK, Adler D, Arntz FO, J. Appl. Phys., 47, 1560 (1976)
  8. Choi JS, Jeong DY, Shin DW, Bae WT, J. Korean Ceram. Soc., 50, 238 (2013)
  9. Christian SD, J. Chem. Educ., 42, 604 (1965)
  10. Choi JS, Korean J. Mat. Res., 30, 223 (2020)
  11. Hosokawa M, Nanoparticle Technology Handbook, p.8, Elsevier, Amsterdam, Netherlands (2007).
  12. Borom MP, Pask JA, J. Am. Ceram. Soc., 49, 1 (1966)
  13. PaParoni G, Webster JD, Walker D, American Miner., 95, 776 (2010)
  14. Tempel LVD, Melis GG, Brandsma TC, Glass Phys. Chem., 26, 606 (2000)
  15. Tool AQ, Tilton LW, Saunders JB, J. Res. Natl. Bur. Stand., 38, 519 (1947)
  16. Hubert M, et al., 77th Conference on Glass Problems: Ceramic Engineering and Science Proceedings, p.115 (2017).
  17. Perry DL, Wilkinson TJ, Appl. Phys. A-Mater. Sci. Process., 89, 77 (2007)
  18. Fluegel A, et al., Phys. Chem. Glasses: Eur. J. Glass Sci. Tech., B, 49, 245 (2008).
  19. Choi JS, J. Korean Ceram. Soc., 51, 312 (2014)
  20. Karpov VG, Parshin DA, Sov. Phys. JETP, 61, 1308 (1985)
  21. Gaskell D, Introduction to Metallurgical Thermodynamics, 2nd Ed., p. 585, McGRAW-Hill, New york (1981).
  22. Anderson P, Halperin BI, Varma CM, Philos. Mag., 25, 1 (1972)
  23. Chanmung C, Naksata M, Chairuangsri TC, Jain H, Lyman CE, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 474, 218 (2008)
  24. Chern TS, Tsai HL, Mater. Chem. Phys., 104(2-3), 472 (2007)
  25. Lee HS, Rhee CH, J. Korean Chem. Soc., 35, 469 (1991)
  26. Lee H, Singh JK, Ismail MA, Bhattacharya C, Seikh AH, Alharthi N, Hussain RR, Sci. Rep., 9, 3399 (2019)