화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.102, 35-43, October, 2021
Phosphoric acid-peroxide mixture surface preparation for the improvement of InGaAs channel characteristics
E-mail:
InGaAs is a potential candidate for a next-generation channel material of complementary metal oxidesemiconductor devices based on its excellent electron mobility. In this study, the surface behaviors of the InGaAs after treatments in H3PO4/H2O2/H2O and HNO3/H2O2/H2O mixtures were investigated and compared with that after treatment in a HCl/H2O2/H2O mixture. Although the presence of Cl- in an acidic solution suppressed the overall etching reaction and material loss of the InGaAs surface, Cl- induced the roughening of the InGaAs surface. The smallest InGaAs/Al2O3 interface charge trap density was observed when the InGaAs surface was prepared in the H3PO4/H2O2/H2O solution. It was also confirmed that the H3PO4/H2O2/H2O-treated InGaAs surface had the highest electron mobility among the samples and the lowest interfacial defect density, such as arsenic vacancies and antisites. Finally, it was concluded that surface preparation of InGaAs with H3PO4/H2O2/H2O effectively improved the interfacial electrical properties at the metal-oxide-InGaAs semiconductor by successfully minimizing surface roughening and the interfacial defect density compared to a well-known HCl/H2O2/H2O solution process.
  1. del Alamo JA, Nature, 479(7373), 317 (2011)
  2. Oktyabrsky S, Ye P, Fundamentals of III-V semiconductor MOSFETs, Springer, New York, 2010.
  3. Roure MC, Vialle S, Rebaud M, Fontaine H, Besson P, Solid State Phenom., 219, 63 (2015)
  4. Riel H, Wernersson LE, Hong M, del Alamo JA, MRS Bull., 39, 668 (2014)
  5. Pearsall TP, Hirtz JP, J. Cryst. Growth, 54, 127 (1981)
  6. Tuominen M, Yasir M, Lang J, Dahl J, Kuzmin M, Makela J, Punkkinen M, et al., Phys. Chem. Chem. Phys., 17, 7060 (2015)
  7. Monch M, Semiconductor Surfaces and Interfaces, 3rd ed., Springer-Verlag, Berlin, Heidelberg, 2001.
  8. Dallesasse JM, Holonyak N, J. Appl. Phys., 113 (2013)
  9. Sioncke S, Lin D, Nyns L, Delabie A, Thean A, Horiguchi N, Struyf H, De Gendt S, Caymax M, ECS Trans., 45, 97 (2012)
  10. Na J, Lim S, Microelectron. Eng., 212, 27 (2019)
  11. van Dorp DH, Arnauts S, Cuypers D, Rip J, Holsteyns F, De Gendt S, Kelly JJ, ECS J. Solid State Sci. Technol., 3, P179 (2014)
  12. Lie FL, Rachmady W, Muscat AJ, Microelectron. Eng., 87, 1656 (2010)
  13. O’Callaghan J, Loi R, Mura EE, Roycroft B, Trindade AJ, Thomas K, Opt. Mater. Express, 7, 4408 (2017)
  14. Choi IC, Kim HT, Yerriboina NP, Lee JH, Teugels L, Kim TG, Park JG, ECS J. Solid State Sci. Technol., 8, P3028 (2019)
  15. Lee J, Na J, Son C, Lim S, Mater. Chem. Phys., 251 (2020)
  16. Mun SY, Yoon KC, An BW, Jpn. J. Appl. Phys., 41, 7529 (2002)
  17. Riley DJ, Glick JS, Parks V, Matamis G, Mat. Res. Soc. Symp. Proc., 477, 519 (1997)
  18. Anttila OJ, Tilli MV, J. Electrochem. Soc., 139, 1751 (1992)
  19. Gale GW, Rath DL, Cooper EI, Estes S, Okorn-Schmidt HF, Brigante J, Jagannathan R, Settembre G, Adams E, J. Electrochem. Soc., 148(9), G513 (2001)
  20. Wang X, Du Y, Yang H, Tian S, Ge Q, Huang S, Wang M, J. Ind. Eng. Chem., 93, 170 (2021)
  21. Sanaei Z, Ramezanzadeh M, Bahlakeh G, Ramezanzadeh B, J. Ind. Eng. Chem., 69, 18 (2019)
  22. Ehteshami SMM, Taheri A, Chan SH, J. Ind. Eng. Chem., 34, 1 (2016)
  23. Deyab MA, J. Ind. Eng. Chem., 22, 384 (2015)
  24. Austin S, Glowacki A, Hydrochloric acid, VCH Publishers, Weinheim, pp.191 2000.
  25. van der Hagen M, Jarnberg J, The Nordic Expert Group for Criteria Documentation of Health Risks from Chemicals, Hydrochloric, pp.81 2009.
  26. Dorfman LM, Adams GE, Reactivity of the hydroxyl radical in aqueous solutions, National Standard Reference Data System, 1973.
  27. Kwon BG, Ryu S, Yoon J, J. Ind. Eng. Chem., 15(6), 809 (2009)
  28. Collin F, Int. J. Mol. Sci., 20, 2407 (2019)
  29. Zhang J, Nosaka Y, J. Phys. Chem. C, 117, 1383 (2013)
  30. Louit G, Foley S, Cabillic J, Coffigny H, Taran F, Valleix A, Renault JP, Pin S, Radiat. Phys. Chem., 72, 119 (2005)
  31. Shu CM, Yang YJ, Thermochim. Acta, 392-393, 259 (2002)
  32. Lipczynska-Kochany E, Sprah G, Harms S, Chemosphere, 30, 9 (1995)
  33. Liao CH, Kang SF, Wu FA, Chemosphere, 44, 1193 (2001)
  34. Luo YR, Bond dissociation energies, CRC handbook of chemistry and physics, 89th ed., CRC Press/Taylor and Francis, Boca Raton, Florida, 2009.
  35. Nicollian EH, Brews JR, MOS (Metal Oxide Semiconductor) Physics and Technology, John Wiley & sons, New York, 1982.
  36. O’Connor E, Brennan B, Djara V, Cherkaoui K, Monaghan S, Newcomb SB, et al., J. Appl. Phys., 109 (2011)
  37. Kim T, Son C, Lee J, Oh E, Li S, Chang CH, Lim S, Appl. Surf. Sci., 536 (2021)
  38. Oh S, Lee S, Oh E, Lim S, Thin Solid Films, 632, 134 (2017)
  39. Zach FX, J. Appl. Phys., 75, 7894 (1994)
  40. von Bardeleben HJ, Stievenard D, Kainosho K, Oda O, J. Appl. Phys., 70(7392-73), 7392 (1991)
  41. Stesmans A, Nguyen S, Afanas’ev VV, Appl. Phys. Lett., 103 (2013)
  42. Bourgoin JC, von Bardeleben HJ, Stievenard D, J. Appl. Phys., 64, R65 (1988)
  43. Seo D, Na J, Lee S, Lim S, Appl. Surf. Sci., 399, 523 (2017)